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In this article, a new deterministic approximation method for Bayesian computation, known as design
of experiments-based interpolation technique (DoIt), is proposed. The method works by sampling points
from the parameter space using an experimental design and then fitting a kriging model to interpolate the
unnormalized posterior. The approximated posterior density is a weighted average of normal densities,
and therefore, most of the posterior quantities can be easily computed. DoIt is a general computing
technique that is easy to implement and can be applied to many complex Bayesian problems. Moreover,
it does not suffer from the curse of dimensionality as much as some quadrature methods. It can work
using fewer posterior evaluations, which is a great advantage over the Monte Carlo and Markov chain
Monte Carlo methods, especially when dealing with computationally expensive posteriors. This article
has supplementary material that is available online.
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1. INTRODUCTION

Computation of posterior quantities is a fundamental prob-
lem in the application of Bayesian methods. Earlier work in
this field includes approximating the posterior distribution by
a normal distribution using the posterior mode (also known as
Laplace’s approximation) and the use of numerical integration
tools, such as Gaussian quadrature; for example, see Naylor and
Smith (1982) and Tierney and Kadane (1986). These methods
are considered inadequate for high-dimensional and complex
Bayesian models. Monte Carlo (MC) methods and the advent
of Markov chain Monte Carlo (MCMC) methods have revo-
lutionized the field during the last two decades. The amount
of literature on MC/MCMC methods is vast, where some of
the landmark articles include Metropolis et al. (1953), Hastings
(1970), Geman and Geman (1984), Tanner and Wong (1987),
and Gelfand and Smith (1990). A recent review of the methods
can be found in Brooks et al. (2011). These methods suffer less
from the curse of dimensionality and can obtain the results with
arbitrary precision. However, the convergence of the methods
and the high computational cost when dealing with computa-
tionally expensive posteriors are still a concern.

In this work, a new deterministic method for approximating
continuous posterior distributions using normal-like basis func-
tions is introduced. The method draws ideas from the design and
analysis of computer experiments (see Santner, Williams, and
Notz 2003) and builds on the earlier work of O’Hagan (1991),
Kennedy (1998), and Rasmussen and Ghahramani (2003). It is
different from the other deterministic approximation methods
such as variational Bayes (VB) (e.g., see Bishop 2006), expec-
tation propagation (EP) (Minka 2001), and integrated nested
Laplace approximation (INLA) (Rue, Martino, and Chopin
2009) in that it is capable of computing the quantities at a
desired accuracy. The proposed method is general and easy to
implement, and can be applied to many Bayesian problems.
It is shown that the method does not suffer from the curse of

dimensionality to the same extent as lattice-based quadrature
methods. With a proper use of experimental design techniques,
the method can be made to work faster than the MC/MCMC
methods, which is quite advantageous in dealing with computa-
tionally expensive posteriors or when the posterior needs to be
evaluated many times within external algorithms.

The remainder of this article is organized as follows. In Sec-
tion 2, this new method, called design of experiments-based
interpolation technique (DoIt), is explained. Experimental de-
signs that are critical for the success of DoIt are discussed in
Section 3. Applications to hierarchical models and computa-
tionally expensive posteriors are discussed in Section 4, and
Section 5 concludes with some remarks and future research
directions.

2. DESIGN OF EXPERIMENTS-BASED
INTERPOLATION TECHNIQUE

In this section, first, the basic idea of DoIt is introduced. It is
presented as an extension of the Laplace approximation, which
requires knowledge of the posterior mode. The method is then
generalized in Section 2.2 to deal with the case of an unknown
posterior mode and nondifferentiable densities. A limitation of
the DoIt, as presented, is that estimated densities could be nega-
tive. After illustrating this issue, further enhancements are devel-
oped in Section 2.3. The resultant method is then used in Section
2.4 for quick approximation of integrals, and comparisons with
other posterior approximation methods are made in Section 2.5.

It is worthwhile to mention that although the focus of this
article is on approximating posterior densities, DoIt can also
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210 V. ROSHAN JOSEPH

be used for approximating arbitrary multivariate densities of
continuous random variables.

2.1 The Basic Idea: Weighted Normal Approximation

Let y = (y1, . . . , yn)′ be the data generated from a sampling
model p( y|θ), where θ = (θ1, . . . , θd )′ denotes the unknown
parameters. Assume that after suitable transformation, θ ∈ Rd ,
and let p(θ) be its prior distribution. Let h(θ) ∝ p( y|θ )p(θ) be
the unnormalized posterior. Then, by the Taylor series expan-
sion of log(h(θ)) at the posterior mode θ̂ = arg maxθh(θ), one
obtains

h(θ) ≈ h(θ̂) exp

{
− 1

2
θ − θ̂ )′�−1(θ − θ̂)

}
, (1)

where � = [−∇2 log(h(θ̂))]−1 is the inverse of the Hessian ma-
trix of− log(h(θ)) evaluated at the posterior mode. This leads to
the Laplace approximation of the posterior distribution, given by
θ | y ∼a N (θ̂,�). This can be a reasonable approximation when
the posterior is symmetric and unimodal. Below is proposed a
method to improve this approximation.

Let φ(θ ; µ,�) denote the normal density function and
g(θ ; µ,�) = exp{− 1

2 (θ − µ)′�−1(θ − µ)}, the unnormalized
density. Consider a generalization of (1) as follows:

h(θ) ≈
m∑

i=1

cig(θ ; νi ,�), (2)

where D = {ν1, . . . , νm} is a set of evaluation points chosen
based on an experimental design and c = (c1, . . . , cm)′ is a vec-
tor of real-valued constants. If the posterior mode is known, then
without loss of generality, one can take ν1 = θ̂ , and therefore,
for m = 1, Equation (2) reduces to (1), with c1 = h(θ̂). The
expansion in (2) is similar to a simple kriging predictor or a
radial basis function predictor with a Gaussian correlation func-
tion (see Santner, Williams, and Notz 2003, pp. 63–64, or Ras-
mussen and Williams 2006, p. 17). Kriging is widely applied in
computer experiments for approximating expensive determin-
istic functions, which is why this method can be expected to
work well in approximating expensive posteriors. The unknown
constants ci’s are obtained as follows. Evaluate h(θ) at the m
points in D, giving rise to h = (h1, . . . , hm)′, where hi = h(νi).
Now, c can be chosen so that the prediction from the right side of
(2) at the points in D is as close to h as possible. In fact, it is
possible to obtain interpolation. Then, one must have Gc = h,
where G is an m×m matrix with ijth element g(νi ; νj ,�).
Since g(θ ; µ,�) is a positive definite function (Santner,
Williams, and Notz 2003, sec. 2.3.3), G−1 exists, provided
νi �= νj for all i and j. Thus, one obtains the unique solution
c̃ = G−1h. Let g(θ) = (g(θ ; ν1,�), . . . , g(θ ; νm,�))′. Then,

h̃(θ) = c̃′g(θ). (3)

Integrating from −∞ to∞ with respect to each θi , one obtains
the marginal likelihood∫

h̃(θ)dθ = c̃′
∫

g(θ)dθ

= (2π )d/2|�|1/2 c̃′1, (4)

where 1 is a column of 1’s having length m. Thus, an
approximation to the posterior distribution is given by

p̃(θ | y) ≈ c̃′g(θ)

(2π )d/2|�|1/2 c̃′1
= c̃′φ(θ )

c̃′1
, (5)

where φ(θ ) = g(θ)/((2π )d/2|�|1/2) = (φ(θ ; ν1,�), . . . , φ(θ ;
νm,�))′. Thus, the approximation is a weighted average of the
normal density functions evaluated at D. Note, however, that
this is not a mixture normal approximation because the c̃i’s can
be negative. The fact that c̃i’s can become negative immediately
raises the concern that the approximation p̃(θ | y) itself can be
negative. This concern is genuine, but as will be seen later in
Section 2.3, the error is not too serious and one can develop
methods to overcome it.

Consider the following illustrative example. Suppose a sin-
gle data value y = 0 is observed from Poisson(θ ). Under the
improper prior distribution, p(θ ) ∝ 1, the posterior distribution
is an exponential distribution (with rate parameter 1). Because
θ is nonnegative, first, transform it to γ = log(θ ). Now, one ob-
tains γ̂ = 0 and � = σ 2 = 1. Transforming back, the Laplace
approximation is given by φ(log(θ ); 0, 1)/θ , which is shown in
Figure 1. One can see that it is a poor approximation to the exact
posterior. Now, consider DoIt with three points taken as: ν1 = γ̂ ,
ν2 = γ̂ − 1.5σ , and ν2 = γ̂ + 1.5σ . The approximated density,
which is a weighted average of lognormal densities, is shown in
Figure 1. One can see that even though the density has two tails,
the approximation is much better. The DoIt approximation with
10 equally spaced points taken from γ̂ − 3σ to γ̂ + 1.5σ is also
shown in Figure 1. One can see that the approximation is almost
indistinguishable from the exact density, clearly showing that
the method is promising.

As is evident from the example, a nice feature of the DoIt is
that the approximation can be improved by adding more points
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Figure 1. Comparison of the Laplace approximation and the DoIt
approximation in the Poisson data example. The online version of this
figure is in color.
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EXPERIMENTS-BASED INTERPOLATION TECHNIQUE 211

to the design. This property is formally stated in the following
theorem and is proved in the Appendix.

Theorem 1. If h(θ) is continuous, then for any α ∈ (0, 1) and
any ε > 0, there exists a finite number of points D =
{ν1, . . . , νm} in � such that∣∣∣∣ ĥ(θ)/

∫
� ĥ(θ)dθ

h(θ)/
∫
� h(θ)dθ

− 1

∣∣∣∣ < ε (6)

for all θ ∈ �, where ĥ(θ ) is any continuous and uniformly con-
vergent interpolator of h(θ) on D and � is the (1− α) highest
posterior density (HPD) credible set.

Since h̃(θ ) in (3) is a continuous and uniformly convergent
interpolator (Buhmann 2003) of h(θ), Theorem 1 holds true for
the proposed DoIt. One can make α arbitrarily small so that
the ratio in (6) is close to p̃(θ | y)/p(θ | y), provided the support
of the posterior distribution is Rd . Because ε can also be made
arbitrarily small, one can make this ratio as close to 1 as possible.

2.2 Unknown Posterior Mode

If it is difficult to obtain the posterior mode by maximizing the
unnormalized posterior h(θ), then one can proceed as follows.
Assuming that a set of points D = {ν1, . . . , νm} can be sampled
from a region based on the prior information about θ . Since
the posterior mode is unknown, one cannot estimate � using
the curvature of log(h(θ)) at the mode. A popular approach to
estimate � in the kriging and radial basis functions’ literature
is cross-validation. First, assume that � is a diagonal matrix
with diagonal elements σ 2 = (σ 2

1 , . . . , σ 2
d )′. Note that the off-

diagonal elements are set to zero to remove the computational
burden of estimating them.

The leave-one-out cross-validation error is defined as ei =
hi − h̃(i)i , where h̃(i)i is the predicted value after removing the
ith point (νi , hi) from the dataset. The computation of the cross-
validation errors can be simplified as follows. It is well known
from the kriging literature that

ei = (G−1)i
(G−1)ii

h,

where (G−1)i is the ith row and (G−1)ii is the ith di-
agonal element of G−1. Let e = (e1, . . . , em)′. Then, e =
{diag(G−1)}−1G−1h, where diag(G−1) is a diagonal matrix con-
taining the diagonal elements of G−1. Now, σ 2 can be esti-
mated by minimizing the mean squared cross-validation error
MSCV = e′e/m. In my experience, I found that it is better to
use a weighted version of the mean squared cross-validation
error given by

WMSCV = 1

m
e′diag(G−1)e. (7)

A justification to this modification follows from the fact that
under the kriging model assumptions, (G−1)ii is proportional to
the inverse of the leave-one-out prediction variance at νi (e.g.,
see Rasmussen and Williams 2006, sec. 5.4.2). Note that the
minimization of WMSCV can be accomplished using a general-
purpose optimization algorithm, such as the Nelder–Mead al-
gorithm, which can become computationally challenging as d
increases.
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Figure 2. The DoIt approximation with m = 10 and m = 20 in the
binary data example. The online version of this figure is in color.

Consider, for example, the following problem of estimating
θ from a binary observation:

y|θ ∼ Bernoulli({1+ exp(−θ )}−1),

θ ∼ N (µ, τ 2).

Suppose y = 1 was observed. Choose µ = 1 and τ = 4. Sup-
pose one samples 10 equally spaced points from −10 to 20.
Minimizing WMSCV in (7), one obtains σ 2 = 9.30 (which can
be compared with σ 2 = 7.11 obtained using the curvature in-
formation at the posterior mode). The DoIt approximation and
the exact posterior density obtained using numerical integration
are shown in Figure 2. One can see that DoIt gives a reasonable
approximation. Better approximation can be obtained by adding
more points to D. The DoIt approximation with m = 20 points
is also shown in Figure 2, which is almost identical to the exact
density.

In summary, DoIt can be applied without knowledge of the
posterior mode or modes and can be used even when the likeli-
hood or prior is nondifferentiable. This overcomes some of the
limitations of the Laplace method. However, it is preferable to
find the mode(s), whenever possible, so that a good approxima-
tion can be obtained with fewer points.

2.3 Mixture Normal Approximation and an Improvement
to DoIt

As noted before, the coefficients c̃i’s can be negative and can
result in regions of θ where the approximation of the posterior
distribution is negative. An example can be seen in Figure 2 for
the case of m = 10, where there are some negative values in the
lower and upper tails of the approximated posterior density. This
problem will not occur if one restricts ci’s to be nonnegative.
Such a solution can be obtained by minimizing

(h − Gc)′G−1(h − Gc), (8)
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212 V. ROSHAN JOSEPH

subject to the constraints ci ≥ 0 for all i = 1, . . . , m. This is a
quadratic program and can be easily solved. Note that if one
removes the nonnegativity constraints, one obtains the earlier
solution c̃ = G−1h. Let ĉ denote the solution from the quadratic
program. Then, the DoIt becomes exactly a mixture normal
approximation given by

p̂(θ | y) ≈ ĉ′φ(θ)

ĉ′1
. (9)

The resulting density for the binary data example with m =
10 points is plotted in Figure 3 as a dotted line. One can see
that although the problem due to negative posterior has dis-
appeared, the overall approximation has deteriorated. A better
mixture normal approximation can be obtained using the it-
erated Laplace (iterLap) approximation in Bornkamp (2011a).
The approximate posterior density fitted using the R package
iterLap (Bornkamp 2011b) is also shown in Figure 3 as a
dashed line. One can see that although the approximation has
improved, there are still some errors. Moreover, since iterLap
requires several optimizations of the unnormalized posterior, the
method does not seem to be useful for approximating expensive
posteriors, and therefore, will not be considered here.

Another approach to overcome the negative posterior density
values is as follows. One can see from Figure 2 that the negative
values of (5) are observed when the posterior density values are
close to zero. Thus, if the DoIt approximation can be pulled
toward zero at the low-probability regions, then one might be
able to avoid the negative values. At the same time, it should not
be pulled toward zero at the high-probability regions; otherwise,
the approximation can become poor. In other words, one should
multiply the DoIt approximation by a function that closely re-
sembles the posterior distribution. One choice for this func-
tion is the mixture normal approximation in (9). Thus, h(θ) is
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Figure 3. Comparison of mixture normal approximation with m =
10, iterated Laplace approximation, and improved DoIt approximation
with m = 10 in the binary data example. The online version of this
figure is in color.

approximated as

h(θ) ≈
m∑

i=1

ĉig(θ ; νi ,�)

{
a +

m∑
i=1

big(θ ; νi ,�)

}
,

where ĉ is the solution of the quadratic program in (8). If
the mixture normal approximation is good, that is, if h(θ) ≈∑m

i=1 ĉig(θ ; νi ,�), then a will be close to 1 and bi will be
close to 0 for all i = 1, . . . , m. The optimal choices of a,
b = (b1, . . . , bm)′, and � will be discussed later. In vector nota-
tion, h(θ) ≈ ĉ′g(θ ; �){a + b′g(θ ; �)}, where the notation from
the previous section has been slightly changed to emphasize the
use of two different variance-covariance matrices. In the same
way, G(�) and G(�) are used to denote the two G matrices.
Let z = h/(G(�)ĉ), where the division of the two vectors indi-
cate an element-wise division, that is, zi = h(νi)/ĉ′g(νi ; �) for
i = 1, . . . , m. For the moment, assume that a is given. Then, to
have interpolation, one must choose b to be

b̂ = G(�)−1(z − a1). (10)

This approach is equivalent to using a simple kriging with a
known mean equal to a. Thus, one obtains the new approxima-
tion: ĥ(θ ) = ĉ′g(θ ; �){a + b̂

′
g(θ ; �)}. As in the development

of (4), one obtains∫
ĥ(θ)dθ = a ĉ′

∫
g(θ ; �)dθ + ĉ′

∫
g(θ ; �)g(θ ; �)′dθ b̂

= a ĉ′(2π )d/2|�|1/21+ ĉ′(2π )d/2 |��|1/2

|� +�|1/2

× G(� +�)b̂. (11)

Now, consider the choice of a. In the kriging literature
(e.g., Joseph 2006), a is taken as the generalized mean
1′G(�)−1 z/1′G(�)−11. However, to get a better approximation
in the high-probability regions, a different choice is used. Here,
a is taken as the mean of ẑ(θ ) = ĥ(θ )/ĉ′g(θ ; �) with respect to
the mixture normal approximation. Thus,

a =
∫

ẑ(θ)
ĉ′φ(θ ; �)

ĉ′1
dθ =

∫
ĥ(θ)dθ

(2π )d/2|�|1/2 ĉ′1
.

Substituting in (11) and solving for a, one obtains

a = ĉ′G(� +�)G(�)−1 z
ĉ′G(� +�)G(�)−11

. (12)

For this choice, the marginal likelihood in (11) takes the simple
form: ∫

ĥ(θ)dθ = a(2π )d/2|�|1/2 ĉ′1.

Thus, the new DoIt approximation of the posterior distribution
is given by

p̂(θ | y) ≈ ĉ′φ(θ ; �)

ĉ′1
{1+ b̂

′
g(θ ; �)/a}. (13)

Let V = �(� +�)−1� and µij = V (�−1νi +�−1νj ). Then,
using the identity

g(θ ; νi ,�)g(θ ; νj ,�) = g(νi ; νj ,� +�)g(θ,µij, V ),
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EXPERIMENTS-BASED INTERPOLATION TECHNIQUE 213

Equation (13) can also be written as

p̂(θ | y) ≈
∑m

i=1 ĉiφ(θ ; νi ,�)+∑m
i=1

∑m
j=1 dijφ(θ ; µij, V )∑m

i=1 ĉi

,

(14)

where

dij = ĉi b̂j |�|1/2

a|� +�|1/2
g(νi ; νj ,� +�).

Note that
∑m

i=1

∑m
j=1 dij = 0. Thus, the new DoIt approxima-

tion is also a weighted average of normal distributions. Here-
after, the new DoIt in (13) or (14) is referred simply as DoIt.

The matrix � can be estimated using cross-validation, as was
done for � in the previous section. To be more specific, let � =
diag(λ)�diag(λ), where λ = (λ1, . . . , λd )′. Now, estimate λ by
minimizing b̂

′{diag(G(�)−1)}−1 b̂/m as in (7), where b̂ and a are
computed using (10) and (12), respectively. Another approach to
estimate λ is to make a Gaussian process (GP) assumption on the
simple kriging model and use likelihood-based methods (e.g.,
see Santner, Williams, and Notz 2003, p. 66). In this work, the
cross-validation-based methods have been used for estimation.

The DoIt approximation for the posterior distribution in the
binary data example with m = 10 points is shown in Figure 3
as a dashed line. One can see that the approximation is almost
indistinguishable from the true density and there are no visible
negative posterior values. Clearly, the improvement obtained
over the mixture normal and the earlier DoIt approximation is
quite substantial. DoIt again does not guarantee the approxi-
mated posterior density to be positive, but it seems to mitigate
the negative-value problems to an extent that one need not worry
about it anymore. However, in applications where the interest
is in calculating tail probabilities, DoIt should be used with
caution.

Consider a more challenging example from Marin and Robert
(2007, example 2.1, p. 26). Suppose two observations y1 =
−4.3 and y2 = 3.2 are generated from a Cauchy distribution
Cauchy(θ, 1). The objective is to estimate θ using the prior
distribution θ ∼ N (0, (

√
10)2). The unnormalized posterior is

given by

h(θ ) = exp(−θ2/20)∏2
i=1(1+ (yi − θ )2)

.

Suppose one samples 10 equally spaced points from−10 to 10.
The DoIt approximation in (13) and the exact posterior density
obtained using numerical integration are shown in Figure 4. The
DoIt approximation with 20 equally spaced points from −10 to
10 is also shown in Figure 4, which gives a better fit to the exact
posterior. One can see that DoIt has no problem in capturing
the bimodal nature of the posterior distribution. However, im-
proved approximations can be obtained by using the curvature
information at each mode, such as by fitting a better mixture
normal approximation. Because it can complicate the formulas
and their implementation, this extension will be considered in a
future work. To continue with the framework introduced here, if
multiple modes are encountered (or if the Laplace approxima-
tion is extremely poor), � is replaced with diag(w)�diag(w),
where � is based on the curvature information at the mode
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Figure 4. The DoIt approximation in the Cauchy data example. The
online version of this figure is in color.

having highest posterior density and w = (w1, . . . , wm)′ is es-
timated using cross-validation methods.

2.4 Marginal Distributions and Posterior Quantities

Marginal posterior distributions can be computed from (14)
using properties of the multivariate normal distribution. For
instance, the marginal posterior distribution of θk is given by

p̂(θk| y)

≈
∑m

i=1 ĉiφ(θk; νik,�kk)+∑m
i=1

∑m
j=1 dijφ(θk; µijk, V kk)∑m

i=1 ĉi

,

(15)

where νik , νjk , and µijk are the kth components of νi , νj , and
µij, respectively.

Many of the required posterior quantities, such as mean and
variance, can also be easily calculated. For example,

E(θ | y) = θ̄ ≈
∑m

i=1 ĉiνi +
∑m

i=1

∑m
j=1 dijµij∑m

i=1 ĉi

and

var(θ | y) ≈
∑m

i=1 ĉi(νiν
′
i +�)+∑m

i=1

∑m
j=1 dij(µijµ

′
ij + V )∑m

i=1 ĉi

− θ̄ θ̄
′
.

More generally, one may be interested in the computation of

ξ = E{f (θ )| y}
≈
∫

f (θ )
ĉ′φ(θ ; �)

a ĉ′1
{a + b̂

′
g(θ ; �)} dθ

for some continuous function f (θ ). An explicit calculation of
this integral can be difficult, except for a few simple functions,
and therefore, approximation is resorted to. First, let f ∗(θ) =
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214 V. ROSHAN JOSEPH

f (θ )z(θ), where z(θ) = a + b̂
′
g(θ ; �). Then,

ξ ≈ 1

a ĉ′1

m∑
i=1

ĉi

∫
f ∗(θ)φ(θ ; νi ,�) dθ . (16)

Now, one can approximate f ∗(θ) using kriging. Let
f = (f (ν1), . . . , f (νm))′ and z = a1+ G(�)b̂. Then, f ∗ =
(f ∗(ν1), . . . , f ∗(νm))′ = f � z, where� denotes element-wise
multiplication.

A key idea in this approximation is to use the following
kriging predictor:

f ∗(θ) = αz(θ)+ g(θ ; 	)′G(	)−1( f ∗ − αz), (17)

where α is a constant that needs to be specified. Then, the
integral in (16) becomes∫

f ∗(θ )φ(θ ; νi ,�) dθ = α

∫
z(θ)φ(θ ; νi ,�) dθ

+
∫

g(θ ; 	)′φ(θ ; νi ,�) dθ

× G(	)−1( f ∗ − αz).

It is easy to show that∫
g(θ ; νj ,	)φ(θ ; νi ,�) dθ = |	|1/2

|	+�|1/2
g(νi ; νj ,	+ �).

Thus,∫
f ∗(θ )φ(θ ; νi ,�) dθ = α

(
a + |�|1/2

|� +�|1/2
Gi(� +�)b̂

)
+ |	|1/2

|	+�|1/2
Gi(	+�)

× G(	)−1( f ∗ − αz),

where Gi(	+ �) and Gi(� +�) denote the ith rows of G(	+
�) and G(� +�), respectively. Substituting in (16), one obtains

ξ ≈ α + |	|1/2

a ĉ′1|	+�|1/2
ĉ′G(	+�)G(	)−1( f ∗ − αz).

Similar to the arguments made in Joseph (2006), choosing α =
ξ makes the approximation less sensitive to the choice of the
covariance matrix 	. Then, one obtains

ξ ≈ ĉ′G(	+�)G(	)−1 f ∗

ĉ′G(	+�)G(	)−1 z
.

As before, 	 can be estimated using cross-validation. But
since the predictions are less sensitive to the choice of 	, a
reasonable approximation can be obtained by taking 	 = �,
which significantly reduces the computations. Thus,

ξ ≈ ĉ′G(� +�)G(�)−1 f ∗

ĉ′G(� +�)G(�)−1 z
. (18)

Consider, for example, the computation of the posterior pre-
dictive density in the binary data example from Section 2.2.
Here, the posterior predictive distribution is Bernoulli, with
probability ξ = E({1+ exp(−θ )}−1| y). Numerical integration
gives ξ = 0.8496. Now, using (18), one obtains ξ ≈ 0.8478,

which is very close to the true value and much better than the
first-order approximation ξ ≈ {1+ exp(−θ̂ )}−1 = 0.914.

2.5 Comparison With Other Approximation Methods

Recently, a wealth of deterministic methods have been
proposed in the machine learning literature for approximate
Bayesian inference, such as VB methods; see the reviews in
Bishop (2006) and Ormerod and Wand (2010), and the refer-
ences therein. Another deterministic approximation method that
is popular in machine learning is the EP algorithm of Minka
(2001). A more recent development on deterministic methods
is the INLA proposed by Rue, Martino, and Chopin (2009),
which can be applied to a class of regression problems, known
as latent Gaussian models. In general, these methods are much
faster than the MCMC algorithms and more accurate than the
original Laplace approximation.

For comparison with the DoIt, consider again the binary
data problem introduced in Section 2.2. Using the tangent
transform variational approximation in Jaakkola and Jordan
(2000), one obtains θ | y ∼a N (µVB, τ 2

VB), where τ 2
VB = (1/τ 2 +

0.5/ξ tanh(ξ/2))−1, µVB = τ 2
VB(µ/τ 2 + 1/2), and ξ is solved

from ξ 2 = τ 2
VB + µ2

VB. Figure 5(a) shows the VB approxima-
tion to the posterior density, which can be compared with the
DoIt approximation in Figure 3. One can see that the variational
method underestimates the posterior variance, leading to a poor
approximation of the density. This underestimation of variance
has been observed by Jaakkola and Jordan (2000) as well as
by other researchers (Rue, Martino, and Chopin 2009). On the
other hand, the EP algorithm works through moment matching
of approximate marginal posterior distributions. Figure 5(a) also
shows a normal distribution approximation obtained by match-
ing the posterior mean and variance, which can be considered as
the solution of the EP algorithm using Gaussian distributions.
One can see that although this approximation is better than that
obtained by the tangent transform variational method, it is still
not satisfactory due to the skewness of the true posterior den-
sity. Of course, this example is a bit unfair to the EP algorithm
because only one binary observation has been used. With more
data, the marginal posterior distributions get closer to normal
distributions and the EP algorithm will become more accurate
(see Kuss and Rasmussen 2005). A main advantage of DoIt over
these methods is that its accuracy can be improved by adding
more evaluation points. Another advantage of DoIt is its ease
of implementation. As can be seen in the foregoing binary data
example, VB methods and the EP algorithm require problem-
specific developments, whereas DoIt can be implemented al-
most as a black box method where the user needs to update only
the likelihood and prior information.

The idea of using interpolation techniques for Bayesian
computation is not new and can be traced back to at least
O’Hagan (1991), where he used GP models for the integrand
in a Bayesian integration problem. He derived Bayes–Hermite
quadrature rules for integration similar in spirit to the widely
used Gauss–Hermite quadrature rules. Extensions of these
quadrature methods to nonnormal distributions were considered
by Kennedy (1998). On the other hand, Rasmussen and Ghahra-
mani (2003) used importance sampling techniques to address the
nonnormal distributions. The DoIt proposed here is much more
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Figure 5. Posterior densities obtained using (a) VB and EP in the binary data example, and (b) DoIt and MCMC using log-posterior
approximation in the Cauchy data example. The online version of this figure is in color.

general than these earlier works. There is no need to guess the
shape of the posterior distribution a priori as in Kennedy (1998),
and thus, DoIt can be applied to a wider class of Bayesian
problems. Moreover, closed-form approximations of posterior
distributions, marginal likelihoods, and marginal posterior dis-
tributions are derived, which makes the implementation of DoIt
extremely easy. Furthermore, reasonable approximations to any
continuous functionals of the parameters can also be obtained
without the need of fitting new GP models. As will be shown in
the next section, efficient designs for the evaluation points can
be generated using some of the ideas in computer experiments’
literature, and therefore, tedious derivations of quadrature points
are also not necessary for implementation.

Another line of research is in using GP to approximate compu-
tationally expensive posterior densities to speed up MC/MCMC
sampling (see the hybrid MC implementation in Rasmussen
2003). An extension of this approach was recently proposed by
Fielding, Nott, and Liong (2011). A distinguishing feature in
their approach is that the logarithm of the unnormalized pos-
terior is approximated using the GP model. This avoids the
negative-value problems encountered in directly approximat-
ing the unnormalized posterior, which is a great advantage.
However, the drawback is that the integrals become analytically
untractable, and therefore, one has to resort to MC/MCMC tech-
niques. Similar approaches to the Bayesian calibration of com-
putationally expensive models can be found in Bliznyuk et al.
(2008) and Henderson et al. (2009). Bliznyuk et al. (2008) used
radial basis functions to approximate the log-posterior, whereas
Henderson et al. (2009) used a GP to approximate the expensive
simulation model instead of using the posterior. The compar-
ison of DoIt with some of these methods is postponed until
Section 3.2.

However, it is of immediate interest to see how the log-
posterior approximation used in Bliznyuk et al. (2008) and
Fielding, Nott, and Liong (2011) compares with that of the di-
rect posterior approximation employed in DoIt. For this purpose,
an ordinary kriging model is fitted with a Gaussian correlation
function using m = 20 points to the log-unnormalized posterior

log(h(θ )) in the Cauchy example. The density of 20,000 draws
obtained using a Metropolis–Hastings algorithm is shown in
Figure 5(b), along with the DoIt approximation constructed us-
ing the same set of 20 points. One can see that DoIt performs
slightly better in this example. In my experience, I found that
the log-posterior approximation works better than the DoIt ap-
proximation for unimodal distributions but not for multimodal
distributions. A simple explanation to this observation is that
most multimodal distributions are finite mixtures and thus are
additive in density scale and not in log-density scale. Another
advantage of DoIt is that it is a pure deterministic approach and
does not require generating random samples, which saves addi-
tional computations. This advantage over the log-posterior ap-
proximation diminishes as the posterior density becomes more
and more expensive to calculate.

3. EXPERIMENTAL DESIGN

Clearly, the choice of the evaluation points is critical for the
success of DoIt. A general strategy that will be adopted here
is to first choose a space-filling design and then to add points
sequentially to improve the accuracy of approximation. Below,
the space-filling design using a 12-parameter Poisson nonlin-
ear mixed model and the sequential design using a difficult-
to-approximate banana-shaped posterior density have been
illustrated.

3.1 Initial Space-Filling Design

First, consider the case of a single known posterior mode.
Knowing the posterior mode (θ̂) and the variability around it (�)
helps to define a region inside the parameter space from which
one can select the evaluation points {ν1, . . . , νm}. Arrange the
points so that D = (ν1, . . . , νm)′ is an m× d design matrix.
Because θi | y’s may be dependent, transform the parameters to
α = �−1/2(θ − θ̂). Now, by Laplace’s approximation, α| y ∼a

N (0, I), where 0 is a vector of 0’s having length d. Thus, αi’s are
approximately uncorrelated. Therefore, first, one can choose a
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216 V. ROSHAN JOSEPH

design D∗ = (ν∗1, . . . , ν
∗
m)′ uniformly distributed in (0, 1)d and

then obtain D = (θ̂ +�1/2�−1(ν∗1), . . . , θ̂ +�1/2�−1(ν∗m))′,
where � is the standard normal distribution function.

Because the likelihood evaluations are deterministic, experi-
mental designs for computer experiments, such as latin hyper-
cube design (LHD), are more suitable here (e.g., see Santner,
Williams, and Notz 2003). A maximin LHD (MmLHD) can
be obtained by maximizing the minimum distance among the
points (Morris and Mitchell 1995). However, in the problem
discussed in this article, one needs to fix one of the design
points at the posterior mode. This can be achieved as follows.
Let ν∗1 be the center point 0.5 = (0.5, . . . , 0.5)′. Then, the re-
maining m− 1 points can be obtained by minimizing⎧⎨⎩

m∑
i=2

m∑
j=2

1/dk(ν∗i , ν
∗
j )

⎫⎬⎭
1/k

for some large value of k (such as k = 15), where d(ν∗i , ν
∗
j ) de-

notes the Euclidian distance between ν∗i and ν∗j .
Regarding the choice of sample size for the initial space-

filling design, a common rule of thumb in the computer exper-
iments’ literature is to use m = 10d (see Loeppky, Sacks, and
Welch 2009). However, approximation of posterior densities is
different from that of computer models in the sense that the
domain of approximation is not well defined. Therefore, using
a larger sample size, say, m = 50d, is recommended.

For posterior distributions with multiple modes, one can take a
union of the designs constructed for each mode and then remove
some points from the intersecting regions of the designs. If the
modes are unknown, then the points should be taken from a
region based on the prior information. Many points are likely
to be from the low-probability regions, and therefore, a much
larger sample size should be used. Moreover, the accuracy of
the approximation needs to be assessed using cross-validation
and more points should be added, as described later.

For illustrative purposes, consider the problem of predicting
the density of nanowires (y) with respect to the thickness of
polymer films (x) in a solution-based growth process. Eight
experiments were conducted with two replicates (except for one

run). The details and the data are given in Dasgupta, Weintraub,
and Joseph (2011). The density of nanowires is assumed to
follow a Poisson distribution with mean µ(x), where

µ(x) = θ1 exp(−θ2x
2)+ θ3{1− exp(−θ2x

2)}�(−x/θ4).

Here, their model has been extended by explicitly includ-
ing the possibility of experimental errors, such as the dif-
ferences in the preparation of substrates, changes in the
machine settings, etc. Thus, for the ith run, let µ(xi) =[
θ1 exp(−θ2x

2
i )+ θ3{1− exp(−θ2x

2
i )}�(−xi/θ4)

]
ui for i =

1, . . . , 8. Note that because both the replicates are obtained
from the same experimental setup, only one parameter is in-
troduced for each run. All of the parameters must be posi-
tive, and therefore, it makes sense to transform them to log-
scale. Let γi = log(θi) for i = 1, . . . , 4 and αi = log(ui) for
i = 1, . . . , 8. Here, an independent and noninformative prior
for γ : p(γ ) ∝ 1 is assumed; however, for identification pur-
poses, an informative prior for α is used. Assuming the ex-

perimental errors can be as large as 20%, αi

iid∼ N (0, 0.12) is
chosen.

By maximizing the log-likelihood, γ̂ = (4.82,−1.69,

3.32, 2.37)′ and α̂ = (−0.003, 0.005,−0.008, 0.014,−0.007,

−0.007, 0.011,−0.005)′ are obtained. The � can now be ob-
tained through numerical differentiation. Suppose m = 50×
12 = 600 is chosen. To avoid tedious programming, the
lhs package in R version 2.9.2 (Carnell 2009) is used to ob-
tain an MmLHD in [0.001, 0.999]12 and the closest point to
0.5 in the design is replaced with 0.5. Now, one can trans-
form, rotate, and shift the points to the desired region based on
the Laplace approximation. Two two-dimensional projections
of the points are shown in Figure 6. One can see that γ3 and
γ4 are highly correlated, and therefore, the rotation of the points
made using the � matrix was quite effective in obtaining a good
design.

The marginal densities of θk’s computed using (15) are plot-
ted in Figure 7 (dashed lines). The marginal densities of ui’s
can be obtained similarly but are not shown here. For compar-
ison purposes, three million samples from the posterior using
Metropolis algorithm have been drawn. Note that such a large

Figure 6. Two-dimensional projection of the design points in the nanowire example: (a) γ1 versus γ2 and (b) γ3 versus γ4.
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Figure 7. Marginal posterior densities of θi’s in the nanowire example. The online version of this figure is in color.

sample for the Metropolis algorithm has been chosen only for
the purpose of getting a gold standard, which may not be needed
in its day-to-day use. The density plots of the samples after a
burn-in of 10,000 are also shown in Figure 7 as solid lines.
One can see that the DoIt gives a reasonably good approxi-
mation to the posterior density. For comparison with the other
deterministic approximation methods, the quadrature method
was implemented using the cubature package in R (Johnson
and Narasimhan 2009). However, the method failed to produce
even the normalizing constant after waiting for one whole day,
whereas the DoIt took only about 5 min for the entire com-
putation on a 3.20-GHz computer. Application of VB, EP, and
INLA methods to this problem is not straightforward, owing
to the nonlinear model structure. Ormerod and Wand (2012)
recently developed Gaussian variational approximation (GVA)
for generalized linear mixed models. GVA cannot be directly
applied here because the model discussed here is Bayesian and
nonlinear. However, assuming some methods can be devised
for its implementation, the final marginal densities are going
to be Gaussian. Therefore, the best-fitting normal distribution
(lognormal after transformation), with the mean and variance
estimated from the MCMC samples, is plotted in Figure 8 for

the case of θ4. One can see that it does not give a good fit to the
true posterior because of the skewness of the distribution. The
Laplace approximation, also plotted for reference, obviously
gives a poor approximation.

3.2 Sequential Design

If the accuracy of the approximation based on the initial
space-filling design is not adequate, then more points need to be
added to improve the accuracy. Consider a sequential strategy of
adding one point to the design at a time. It is well known in the
literature of optimal design of experiments that the information
gain can be maximized by adding the new point at the location
with maximum prediction variance (see Fedorov 1972). Similar
ideas have been used for active learning by MacKay (1992)
and Cohn (1994); see also Gramacy and Lee (2009) for the
adoption of these ideas in computer experiments. Since the DoIt
approximation in (13) is not based on any stochastic model, it
is not easy to obtain the prediction variance. However, it is easy
to obtain a conditional prediction variance because the DoIt
approximation can be viewed as a simple kriging predictor,
given ĉ′g(θ ; �). This conditional variance is proportional to
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Figure 8. Comparison of DoIt with the Laplace approximation and
GVA (computed using posterior mean and variance) in the nanowire
example for the marginal posterior distribution of θ4. The online version
of this figure is in color.

(ĉ′g(θ ; �))2{1− g(θ ; �)′G−1(�)g(θ ; �)}. Thus, the new point
is chosen as

νm+1 = arg max
θ

(ĉ′g(θ ; �))2{1− g(θ ; �)′G−1(�)g(θ ; �)}.
(19)

The foregoing criterion makes sense intuitively because the
second term is 0 at the already observed locations {ν1, . . . , νm}.
Thus, by maximizing the variance, one moves away from those
locations. Moreover, since the mixture normal approximation
[the first bracketed term in (19)] roughly captures the shape of
the posterior, one moves toward the regions with large proba-
bility mass. This is desirable. However, the objective function
in (19) can be multimodal and hard to optimize. To circumvent
this problem, a local optimization in a region where the variance
is expected to be large can be performed. One approach to iden-
tify this region is to use a leave-one-out estimation strategy. Let
v(i) be the estimate of prediction variance at νi after removing
point νi from the design. Computation of v(i)’s is complicated
because there is no explicit expression for ĉ, the solution to a
quadratic program. Repeating this m times makes the compu-
tations quite demanding. To reduce the computational time, an
approximation for the v(i)’s is used. As will be shown in the
Appendix,

v(i) ≈
(

hi + li − G−1
i (�)

G−1
ii (�)

(h + l)

)2
1

G−1
ii (�)

(20)

for i = 1, . . . , m, where l = G(�)ĉ− h and G−1
i (�) is the ith

row of G−1(�). This can be computed more efficiently because
one needs to solve the quadratic program and invert G(�) and
G(�) only once. Let i∗ = arg maxi v(i). Now, the optimization
in (19) can be performed in the neighborhood of νi∗ . In other

words, one only needs to find a local maxima of the prediction
variance near νi∗ , which is easy to do.

For illustrative purposes, consider the two-dimensional pos-
terior density with banana-shaped contours discussed in Haario,
Saksman, and Tamminen (2001):

p(θ | y) = φ((θ1, θ2 + 0.03θ2
1 − 3)′; (0, 0)′, diag{100, 1}).

Suppose a 100-run MmLHD from the region [−20, 20]×
[−10, 5] is chosen as the initial space-filling design (shown
as circles in Figure 9). The � and � can be estimated using
cross-validation, as described before. The DoIt approximation
of the posterior distribution is shown in Figure 9(a), which does
not give a good fit to the exact distribution. The maximum
value of v(i) happens at ν25 = (2.56, 2.92)′. Now, the new point
to add is found using (19), where ν25 is used as the starting
point in the optimization algorithm. The algorithm converged to
(7.34, 1.44)′, which could be a local optimum near ν25. This is
taken as the new point ν101. This procedure can be continued.
Figure 9(b), (c), and (d) shows the posterior distribution after
adding 25, 50, and 75 points, respectively. One can clearly see
the improvement in the approximation. Typically, the exact den-
sity will not be known, and therefore, the improvement should
be monitored using some measures that can be computed. Here,
it is proposed to monitor the leave-one-out cross-validation er-
rors: cvi = hi − ĥ(i)i . Note that cvi is defined with respect to the
DoIt approximation in (13) and is different from ei = hi − h̃(i)i ,
which is defined using (5). Similar to (20), a shortcut formula
for computing cvi’s can be obtained as (see the Appendix for
details)

cvi = hi −
(

hi + li − G−1
i (�)

G−1
ii (�)

(h + l)

)

×
(

hi

hi + li
− G−1

i (�)

G−1
ii (�)

(
h

h + l
− a1

))
. (21)

Define the percentage relative error to be

%RE = |cv|
h̄
× 100,

where |cv| = E(|cv(θ )| | y) and h̄ = E(h(θ)| y) are the average
absolute cross-validation error and average height of the un-
normalized posterior with respect to the posterior distribution,
respectively. These quantities can be easily computed using (18).
The %RE is plotted in Figure 10. At m = 100, the relative er-
ror was 52%, which is reduced to 4% after adding 75 points.
One can stop adding points when the relative error is less than
an acceptable level. To check the effectiveness of the sequen-
tial design, a 175-run MmLHD is generated. The relative error
of the corresponding DoIt approximation is found to be 27%,
which is much larger than that of the 100+ 75-run sequential
design.

For comparison with the other deterministic approximation
methods, the VB approximation of the posterior using the prod-
uct density transform approach is computed. It is given by

p̂VB(θ | y) = q1(θ1)φ
(
θ2; µ2, σ

2
2

)
,

where q1(θ1) ∝ exp{−0.5[θ2
1 /100+ (µ2 + 0.03θ2

1 − 3)2]},
µ2 = −0.03(µ2

1 + σ 2
1 )+ 3, and σ 2

2 = 1. The posterior mean
(µ1) and variance (σ 2

1 ) of θ1 can be obtained through numerical
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Figure 9. DoIt approximation (contour lines) superimposed over the image of the true posterior with (a) initial space-filling design (m = 100),
(b) after adding 25 points (m = 125), (c) after adding 50 points (m = 150), and (d) after adding 75 points (m = 175). Added points are denoted
with a “+.” The online version of this figure is in color.

integration. The iterations quickly converges to the distribution
shown in Figure 11(a). One can see that it is not a good
approximation. This is due to the high correlation between the
two parameters, which is ignored in the factorized solution
of the VB method. I also ran, the hybrid MCMC algorithm
of Fielding, Nott, and Liong (2011) using the R package
MCMChybridGP (Fielding 2010). The same 100-run MmLHD
was used as the initial sample and 500 samples were generated
from the exploratory phase of the algorithm and another 1500
samples from the sampling phase of the algorithm. Figure 11(b)
shows that the hybrid MCMC sampling is very good. However,
it took about 90 min for this sampling, whereas DoIt took only
about 3 min for the entire computation.

4. HIERARCHICAL MODELS

Hierarchical models create challenges in Bayesian computa-
tion due to the sheer number of parameters they may contain.
Quadrature methods break down in solving them due to the

curse of dimensionality. MCMC on the other hand, and in par-
ticular Gibbs sampling, is surprisingly efficient in solving such
problems (Gelfand et al. 1990). DoIt is less affected by the curse
of dimensionality because the evaluation points need not have to
be on a regular grid, as in the lattice-based quadrature methods.
However, finding a good space-filling design in high dimensions
can still be a difficult task. Here, a method to efficiently sample
the points and obtain the DoIt approximation by making use of
a special probability structure of hierarchical models has been
proposed.

Consider a hierarchical model y|θ ∼ p( y|θ ), θ |η ∼ p(θ |η),
and η ∼ p(η). Suppose that one can obtain an explicit expression
of

p( y|η) =
∫

p( y|θ )p(θ |η) dθ ,

and that the conditional distribution

p(θ |η, y) ∝ p( y|θ)p(θ |η)
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Figure 10. Percent relative error against the number of points added
sequentially in the banana-shaped posterior example.

is known (i.e., it has a standard form). Let h(η) ∝ p( y|η)p(η).
Now, using DoIt, one can approximate the posterior distribution
of η as

p̂(η| y) ≈ ĉ′φ(η; �)

ĉ′1
{1+ b̂

′
g(η; �)/a}, (22)

where the notations are defined as before. Now, the posterior
distribution of θ can be obtained using the formula in (18):

p̂(θ | y) ≈ ĉ′G(� +�)G(�)−1 p∗(θ )

ĉ′G(� +�)G(�)−1 z
, (23)

where p∗(θ) = (p(θ |ν1, y), . . . , p(θ |νm, y))′ � z and z =
a1+ G(�)b̂. Although (18) is only an approximate formula,
it gives a valid density here because

∫
p∗(θ )dθ = z. Moreover,

the posterior density is a weighted average of p(θ |νi , y)’s, and
since this conditional distribution has a standard form, the re-
quired posterior summaries of θ can be easily computed.

The advantage of the foregoing method is that one only needs
to create a design D = {ν1, . . . , νm} in the space of η. The
vector θ may contain thousands of parameters, which cause no
difficulty in the computation. In a more general setting of the
hierarchical models, suppose one can group the parameters (and
the hyperparameters) as (θ1, . . . , θq) and that one can integrate
out θ1, . . . , θq−1. Then, to apply DoIt, one needs to create a
design in the space of θq . Therefore, DoIt works efficiently if
the size of θq is small.

4.1 A Longitudinal Data Analysis

As an example, consider the longitudinal study of orthodontic
measurements on 27 children, reported by Pinheiro and Bates
(2000), which was recently reanalyzed by Ormerod and Wand
(2010) using VB methods. The study concerns the modeling
of an orthodontic distance (y) measured on the children with
respect to their age and sex. Consider the following random
intercept model:

yij|β, ui, σ
2
ε

iid∼ N
(
β0 + ui + β1ageij + β2sexi , σ

2
ε

)
,

ui |σ 2
u

iid∼ N
(
0, σ 2

u

)
,

for i = 1, . . . , 27 and j = 1, . . . , 4. The prior specifications
for the parameters are made as in Ormerod and Wand (2010):

β ∼ N (0, 108 I3) and σ 2
ε , σ 2

u

ind.∼ IG(.01, .01). In this analysis,
the sex variable is coded as 1 for male and −1 for female, and
the age variable is centered to have mean 0.

There are a total of 32 parameters in this Bayesian model, in-
cluding the random effects ui’s, the regression parameters βi’s,
and the two variance components. A direct fitting of DoIt for
such a high-dimensional problem can be challenging. Fortu-
nately, one can integrate out the random effects, thereby reduc-
ing this to a five-dimensional problem. First, write the model in
matrix notation: y = Xβ + Zu + ε, where X is the 108× 3 re-
gression model matrix and Z is the 108× 27 indicator matrix
for the random effects u = (u1, . . . , u27)′. Integrating out u, one
obtains

y|β, σ 2
ε , σ 2

u ∼ N
(
Xβ, σ 2

ε I108 + σ 2
u ZZ′

)
.

Figure 11. Comparison of different methods in the banana-shaped posterior example: (a) VB and (b) hybrid MCMC of Fielding, Nott, and
Liong (2011). The online version of this figure is in color.
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EXPERIMENTS-BASED INTERPOLATION TECHNIQUE 221

Also, one has

u|β, σ 2
ε , σ 2

u , y ∼ N

((
Z′Z + σ 2

ε

σ 2
u

I27

)−1

Z′( y − Xβ),(
Z′Z + σ 2

ε

σ 2
u

I27

)−1)
.

This fits into the earlier discussion of applying DoIt to hierar-
chical models with η = (β ′, σ 2

ε , σ 2
u )′ and θ = u. Thus, one can

obtain the posterior distributions using (22) and (23). DoIt was
fitted using a 250-run space-filling design, and the marginal pos-
terior distributions of one of the ui’s, βi’s, σ 2

ε , and σ 2
u are shown

in Figure 12. The density plots of 300,000 samples obtained
using Gibbs sampling are also shown in the same plot. One
can see that DoIt and Gibbs sampling are in good agreement.
Now, consider the VB analysis. As shown in Ormerod and Wand
(2010), the posterior density can be factorized into a product of
a 30-dimensional multivariate normal density for the fixed and
random effects, and two inverse gamma densities for the two
variance components. The parameters of these densities can be
obtained using the algorithm given in Ormerod and Wand. The

resulting marginal posterior densities are plotted in Figure 12.
One can see that the VB approximation is quite good for the re-
gression model parameters βi’s and the random effects ui’s, but
it gives a poor approximation for the two variance components.

4.2 A Computationally Expensive Posterior

As another example of hierarchical models, consider a com-
puter experiment conducted to optimize a laser-assisted mechan-
ical micromachining (LAMM) process. Four process variables,
depth of cut (x1), cutting speed (x2), laser power (x3), and dis-
tance between the laser and the cutting tool (x4), are varied in
the experiment using a 4× 2× 3× 2 full factorial design (all
the variables are scaled in −1 to 1). Many outputs are obtained
in the experiment, but for illustrative purposes, here only the
cutting force (y) has been analyzed. The details about the pro-
cess and the experiment can be found in Singh, Joseph, and
Melkote (2011). The computer model (θ (x)) is computationally
expensive, with each experimental run taking more than 12 hr
of computer time. Thus, an easy-to-evaluate approximation of
the computer model is required for predicting and optimizing
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Figure 12. Comparison of DoIt with Gibbs sampling and VB in the orthodontic example. The online version of this figure is in color.
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222 V. ROSHAN JOSEPH

the cutting force. This is usually done using a GP model (Sant-
ner, Williams, and Notz 2003): θ (x) ∼ GP(µ, τ 2r), which can
be viewed as a prior on the underlying true computer model.
Here, r(xi , xj ) = cor{θ (xi), θ (xj )} is the correlation function,
which is taken as the Gaussian correlation function given by
exp{−∑4

k=1 αk(xik − xjk)2}. Assume a noninformative prior
for the hyperparameters µ and τ 2: p(µ, τ 2) ∝ 1/τ 2. The pri-

ors on the correlation parameters are chosen as γi = log(αi)
iid∼

N (0, 1) for i = 1, . . . , 4.
In this study, there are 48 observations from the computer

model y = (y1, . . . , yn)′ at the locations specified by the full
factorial design (n = 48). Thus, the joint likelihood is given by

h(θ (x), µ, τ 2, γ ) ∝ p( y|θ (x), µ, τ 2, γ )p(θ (x)|µ, τ 2, γ )

× p(µ, τ 2)p(γ ),

= p(θ (x)|µ, τ 2, γ , y)p( y|µ, τ 2, γ )

× p(µ, τ 2)p(γ ), (24)

where γ = (γ1, . . . , γ4)′. It is well known that

θ (x)|µ, τ 2, γ , y ∼ N
(
µ+ r(x)′R−1( y − µ1), τ 2{1− r(x)′

× R−1r(x)}),
where r(x)′ = (r(x, x1), . . . , r(x, xn)) and R is the n× n cor-
relation matrix with ijth element r(xi , xj ). Thus, integrating out
θ (x) from (24), one obtains

h(µ, τ 2, γ ) = p( y|µ, τ 2, γ )p(µ, τ 2)p(γ ).

Now, one can fit DoIt. In fact, in this particular case, it is easy to
integrate out µ and τ 2 as well. This reduction to a smaller space
makes the choice of a design easier. Thus, one obtains

h(γ ) = |R|−1/2(1′R−11)−1/2[( y − µ̂1)′R−1( y − µ̂1)]−(n−1)/2,

where the proportionality constant is omitted. One also needs
the conditional distribution p(θ (x)|γ , y), which can be obtained
as (e.g., see Santner, Williams, and Notz 2003, p. 95)

θ (x)− θ̂ (x)√
V (x)

|γ , y ∼ tn−1, (25)

where

θ̂ (x) = µ̂+ r(x)′R−1( y − µ̂1),

V (x) = τ̂ 2

(
1− r(x)′R−1r(x)+ {1− r(x)′R−11}2

1′R−11

)
,

µ̂ = 1′R−1 y

1′R−11
, and

τ̂ 2 = 1

n− 1
( y − µ̂1)′R−1( y − µ̂1).

Now, one can fit DoIt to obtain p̂(γ | y) and then use (23) to
obtain p̂(θ (x)| y).

As described in Section 3.1, an MmLHD of m = 100 points
in the space of γ was chosen and the DoIt was fitted. The pos-
terior distribution of θ (x) obtained from (23) is a weighted
average of t-distributions given in (25). This can be used
for predicting the cutting force at any x and quantifying
its uncertainty. As an example, predictions at the three lo-
cations x = (−0.5,−0.5,−0.5,−0.5)′, x = (0, 0, 0, 0)′, and
x = (0.5, 0.5, 0.5, 0.5)′ are shown in Figure 13 (dashed lines).
For comparison purposes, a Metropolis algorithm is run to obtain
100,000 posterior samples. The resulting posterior densities of
the predictions are also plotted in Figure 13 (solid lines), which
are in good agreement with the densities obtained using DoIt.

In this example, DoIt took about 3 sec on a 3.20-GHz com-
puter, whereas the MCMC took about 10 min on the same com-
puter. This is an example of a computationally intensive poste-
rior because its calculation requires the inverse of the matrix R,
whose computational complexity is O(n3). Here, n was only 48.
In many other computer experiments and spatial statistics prob-
lems, n can be much larger (>10, 000), where it is impractical
to apply MCMC. Because of this computational hindrance, it
is a common practice to avoid a fully Bayesian analysis by ig-
noring the variability in γ . For example, the posterior densities
of the three predictions after plugging in the posterior mode of
γ in (25) are shown in Figure 13 (dotted lines). One can see that
the plug-in approach underestimates the prediction uncertain-
ties. This example clearly demonstrates the advantages of using
DoIt, because it can easily incorporate these uncertainties even
in problems with large datasets.
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Figure 13. Posterior distribution of the cutting force predictions at (a) x = (−0.5,−0.5,−0.5,−0.5)′, (b) x = (0, 0, 0, 0)′, and (c) x =
(0.5, 0.5, 0.5, 0.5)′ using DoIt and MCMC, and with γ = γ̂ (plug-in). The online version of this figure is in color.
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5. CONCLUSIONS

In this article, a method known as design of experiments-
based interpolation technique (DoIt) has been described for
approximating continuous posterior distributions using normal-
like basis functions. Thus, the method can be considered as an
extension of the Laplace method. The method is much more
general and flexible in the sense that it does not require the pos-
terior to be unimodal or differentiable. Moreover, as the number
of basis functions increases, the approximation becomes better,
and therefore, unlike the Laplace method, DoIt is capable of
approximating the posterior with any desired precision. This is
a great advantage over other deterministic approximation meth-
ods, such as VB, EP, and INLA. Moreover, DoIt can be imple-
mented almost as a black box method and can be easily adapted
to many Bayesian problems. Here, it is shown through many
examples that DoIt, with fewer posterior evaluations, can pro-
duce comparable accuracy to those produced by the MC/MCMC
methods. This is especially useful when the posterior is expen-
sive to evaluate or when it needs to be evaluated many times as
part of some external algorithms.

However, DoIt does not seem to be as flexible as the MCMC
methods, particularly in fitting hierarchical models. As alluded
before, when the parameters are grouped as (θ1, . . . , θq), DoIt
can be efficient only if most parameters can be integrated out,
leaving only a small set of parameters (say, θq). The method also
requires the conditional distributions p(θ i |θq, y) to be avail-
able, whereas a Gibbs sampling algorithm requires only the
full conditional distributions p(θ i |{θ j }j �=i , y) to be available,
which in most hierarchical models are much easier to obtain.
Nevertheless, DoIt can solve many of the hierarchical model
problems when conjugate prior distributions are used. More-
over, its applicability to a wider class of problems is possible
if more efficient methods for design construction that make use
of the hierarchical model structure can be developed. Further-
more, in this article, the focus has been on normal-like basis
functions. However, as with kriging, it is possible to use other
basis functions. If the method can be further extended to incor-
porate some of the conditional distributions as bases, then many
of the hierarchical model problems can be solved even more
efficiently.

The quality of kriging approximation depends on the fill dis-
tance of the space-filling design (Haaland and Qian 2011). As
the dimensions increase, the fill distance increases unless the
number of designs points are also increased. However, find-
ing a large space-filling design in a higher-dimensional space
is a difficult task. Furthermore, computational difficulties and
numerical errors also increase as the the number of points in-
creases. Therefore, the DoIt approximation tends to deteriorate
as the dimension increases. As a result, apart from some of
the hierarchical models, DoIt seems to be capable of handling
only small-to-moderately large number of dimensions, whereas
the other methods, such as VB, EP, and INLA, have shown to
be capable of handling hundreds or thousands of dimensions.
The strength of DoIt relative to such approximation methods
is in delivering fast and accurate approximations for moderate-
dimensional posterior distributions. Moreover, VB and EP meth-
ods work well only under some restrictive assumptions about
the form of the posterior such as that it can be factorized into a

product of marginals. It will be interesting to see if DoIt can also
be extended to deal with high dimensions by invoking similar
assumptions. This is left as a topic for future research.

APPENDIX: PROOFS

Proof of Theorem 1

Let I = ∫ h(θ)dθ and � the (1− α) HPD credible set
of the posterior distribution for α ∈ (0, 1). Then, there exists
κα > 0 such that h(θ) ≥ καI for all θ ∈ �, and

∫
� h(θ)dθ =

(1− α)I . Because � is a closed set, for any r > 0, there ex-
ists a finite number of balls (m) with radius r that can cover
�. Let ν1, . . . , νm be the center of these m balls. Consider an-
other continuous function ĥ(θ) that interpolates h(θ) on the m
points. Because h(θ) ≥ καI for all θ ∈ �, ĥ(θ)/h(θ) is also
a continuous function on �. Moreover, ĥ(νi)/h(νi) = 1 for
all i = 1, . . . , m. Therefore, for any radius r > 0 one can
find an ε′ > 0 such that |ĥ(θ)/h(θ)− 1| < ε′ for all θ ∈ �.
Since ĥ(θ) is uniformly convergent, one can choose a radius
r > 0 small enough (and m large enough) so that ε′ < 1. Thus,
0 < (1− ε′)h(θ) < ĥ(θ) < (1+ ε′)h(θ) for all θ ∈ �, which
implies

0 < (1− ε′)(1− α)I <

∫
�

ĥ(θ )dθ < (1+ ε′)(1− α)I.

Thus,

ĥ(θ )
∫
� h(θ)dθ

h(θ)
∫
� ĥ(θ)dθ

<
(1+ ε′)h(θ)(1− α)I

h(θ)(1− ε′)(1− α)I
= 1+ ε′

1− ε′
.

Similarly,

ĥ(θ )
∫
� h(θ)dθ

h(θ)
∫
� ĥ(θ)dθ

>
(1− ε′)h(θ)(1− α)I

h(θ)(1+ ε′)(1− α)I
= 1− ε′

1+ ε′
.

Thus,

−2ε′

1+ ε′
<

ĥ(θ)
∫
� h(θ)dθ

h(θ)
∫
� ĥ(θ )dθ

− 1 <
2ε′

1− ε′
,

which implies∣∣∣∣∣ ĥ(θ)
∫
� h(θ)dθ

h(θ)
∫
� ĥ(θ )dθ

− 1

∣∣∣∣∣ <
2ε′

1− ε′
,

for all θ ∈ �. Now, the theorem is proved by letting ε =
2ε′/(1− ε′).

Proof of Equation (20)

Let h+(θ) = g(θ ; �)′ ĉ, where ĉ is obtained by minimiz-
ing (h − G(�)c)′G−1(�)(h − G(�)c), subject to c ≥ 0. By
Kuhn–Tucker conditions: G(�)c = h + l , c ≥ 0, l ≥ 0, and
ci li = 0 for i = 1, . . . , m, where l = (l1, . . . , lm)′ are the
Lagrangian multipliers. Thus, if ĉ is the solution of the
quadratic program, then l = G(�)ĉ− h. Suppose the ith point
is removed. Then, ĉ(i) = G−1

(i) (�)(h(i) + l̂ (i)). Assume that the
change in l due to the removal of the ith point is negligi-
ble. Then, one can approximate l̂ (i) ≈ l (i), which gives ĉ(i) ≈
G−1

(i) (�)(h(i) + l (i)). Also assume that ĉ(i) ≥ 0 and ĉ(i)j lj = 0 for
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224 V. ROSHAN JOSEPH

all j �= i. Thus,

h+(i)(νi) ≈ g(i)(νi ; �)′ ˆc(i) = g(i)(νi ; �)′G−1
(i) (�)(h(i) + l (i))

= −G−1
(i)i(�)

G−1
ii (�)

(h(i) + l (i)) = hi + li − G−1
i (�)

G−1
ii (�)

(h + l).

Also, 1− g(i)(νi ; �)′G−1
(i) (�)g(i)(νi ; �) = 1/G−1

ii (�). Substi-

tuting them in v(i) = (h+(i)(νi))2{1− g(i)(νi ; �)′G−1
(i) (�)g(i)

(νi ; �)}, one obtains the desired result.

Proof of Equation (21)

Following the proof of (20), one has for j �= i

h+(i)(νj ) ≈ g(i)(νj ; �)′ ˆc(i) = g(i)(νj ; �)′G−1
(i) (�)(h(i) + l (i))

= hj + lj .

Assume that a(i) ≈ a. Then,

ĥ(i)(νi) = h+(i)(νi)

{
a + G−1

(i) (�)

(
h(i)

h+(i)
− a1

)}

≈ h+(i)(νi)

{
a − G−1

(i)i(�)

G−1
ii (�)

(
h(i)

h(i) + l (i)
− a1

)}

=
(

hi + li − G−1
i (�)

G−1
ii (�)

(h + l)

)

×
{

hi

hi + li
− G−1

i (�)

G−1
ii (�)

(
h

h + l
− a1

)}
.

Substituting this in cvi = hi − ĥ(i)(νi), one obtains (21).

SUPPLEMENTARY MATERIAL

R codes and data files: The R codes and data files can be
downloaded as a .zip file.

ACKNOWLEDGMENTS

The author thanks the editor, four referees, and Mr. Rui Tuo
for their valuable comments and suggestions. This research
was supported by the U.S. National Science Foundation grant
CMMI-1030125.

[Received September 2010. Revised February 2012.]

REFERENCES

Bishop, C. M. (2006), Pattern Recognition and Machine Learning, New York:
Springer. [209,214]

Bliznyuk, N., Ruppert, D., Shoemaker, C., Regis, R., Wild, S., and Mugunthan,
P. (2008), “Bayesian Calibration and Uncertainty Analysis for Computa-
tionally Expensive Models Using Optimization and Radial Basis Function
Approximation,” Journal of Computational and Graphical Statistics, 17,
270–294. [215]

Bornkamp, B. (2011a), “Approximating Probability Densities by Iterated
Laplace Approximations,” Journal of Computational and Graphical Statis-
tics, 20, 656–669. [212]

——— (2011b), “iterLap: Iterated Laplace approximations, (R
package version 1.0-2),” Available at http://cran.r-project.org/
src/contrib/Archive/iterLap/ [212]

Brooks, S., Gelman, A., Jones, G. L., and Meng, X.-L. (2011), Handbook of
Markov Chain Monte Carlo, Boca Raton, FL: CRC Press. [209]

Buhmann, M. D. (2003), Radial Basis Functions: Theory and Implementations,
Cambridge: Cambridge University Press. [211]

Carnell, R. (2009), “lhs: Latin hypercube samples (R package version 0.5),”
Available at http://cran.r-project.org/src/contrib/Archive/lhs/ [216]

Cohn, D. A. (1996), “Neural Network Exploration Using Optimal Experimental
Design,” Advances in Neural Information Processing Systems, 6, 679–686.
[217]

Dasgupta, T., Weintraub, B., and Joseph, V. R. (2011), “A Physical-Statistical
Model for Density Control of Zinc Oxide Nanowires,” IIE Transactions on
Quality and Reliability Engineering, 43, 233–241. [216]

Fedorov, V. V. (1972), Theory of Optimal Experiments, New York: Academic
Press. [217]

Fielding, M. (2010), “MCMChybridGP: Hybrid Markov chain Monte
Carlo using Gaussian processes (R package version 3.1),” Available at
http://cran.r-project.org/ [218]

Fielding, M., Nott, D. J., and Liong, S-Y (2011), “Efficient MCMC Schemes
for Computationally Expensive Posterior Distributions,” Technometrics, 53,
16–28. [215,218,219]

Gelfand, A. E., Hills, S. E., Racine-Poon, A., and Smith, A. F. M. (1990),
“Illustration of Bayesian Inference in Normal Data Models Using Gibbs
Sampling,” Journal of the American Statistical Association, 85, 972–985.
[209]

Gelfand, A. E., and Smith, A. F. M. (1990), “Sampling-Based Approaches to
Calculating Marginal Densities,” Journal of the American Statistical Asso-
ciation, 85, 398–409. [219]

Geman, S., and Geman, D. (1984), “Stochastic Relaxation, Gibbs Distributions
and the Bayesian Restoration of Images,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, 6, 721–741. [209]

Gramacy, R. B., and Lee, H. K. H. (2009), “Adaptive Design and Analysis of
Supercomputer Experiments,” Technometrics, 51, 130–145. [217]

Haaland, B., and Qian, P. Z. G. (2011), “Accurate Emulators for Large-Scale
Computer Experiments,” The Annals of Statistics, 39, 2974–3002. [223]

Haario, H., Saksman, E., and Tamminen, J. (2001), “An Adaptive Metropolis
Algorithm,” Bernoulli, 7, 223–242. [218]

Hastings, W. K. (1970), “Monte Carlo Sampling Methods Using Markov Chain
and Their Applications,” Biometrika, 87, 97–109. [209]

Henderson, D. A., Boys, R. J., Krishnan, K. J., Lawless, C., and Wilkinson, D.
J. (2009), “Bayesian Emulation and Calibration of a Stochastic Computer
Model of Mitochondrial DNA Deletions in Substantia Nigra Neurons,” Jour-
nal of the American Statistical Association, 104, 76–87. [215]

Jaakkola, T. S., and Jordan, M. I. (2000), “Bayesian Parameter Estimation via
Variational Methods,” Statistics and Computing, 10, 25–37. [214]

Johnson, S. G., and Narasimhan, B. (2009), “cubature: Adaptive multivari-
ate integration over hypercubes (R package version 1.0),” Available at
http://cran.r-project.org/ [216]

Joseph, V. R. (2006), “Limit Kriging,” Technometrics, 48, 458–466. [212,214]
Kennedy, M. (1998), “Bayesian Quadrature With Non-Normal Approximating

Functions,” Statistics and Computing, 8, 365–375. [209,214]
Kuss, M., and Rasmussen, C. E. (2005), “Assessing Approximate Inference

for Binary Gaussian Process Classification,” Journal of Machine Learning
Research, 6, 1679–1704. [214]

Loeppky, J. L., Sacks, J., and Welch, W. J. (2009), “Choosing the Sample Size of
a Computer Experiment: A Practical Guide,” Technometrics, 51, 366–376.
[216]

MacKay, D. J. C. (1992), “Information-Based Objective Functions for Active
Data Selection,” Neural Computation, 4, 590–604. [217]

Marin, J-M, and Robert, C. P. (2007), Bayesian Core: A Practical Approach to
Computational Bayesian Statistics, New York: Springer. [213]

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and Teller,
E. (1953), “Equation of State Calculation by Fast Computing Machines,”
Journal of Chemical Physics, 21, 1087–1092. [209]

Minka, P. (2001), “Expectation Propagation for Approximate Bayesian Infer-
ence,” Uncertainty in Artificial Intelligence, 17, 362–369. [209,214]

Morris, M. D., and Mitchell, T. J. (1995), “Exploratory Designs for Computer
Experiments,” Journal of Statistical Planning and Inference, 43, 381–402.
[216]

Naylor, J. C., and Smith, A. F. M. (1982), “Applications of a Method for the
Efficient Computation of Posterior Distributions,” Applied Statistics, 31,
214–225. [209]

O’Hagan, A. (1991), “Bayes-Hermite Quadrature,” Journal of Statistical Plan-
ning and Inference, 29, 245–260. [209,214]

Ormerod, J. T., and Wand, M. P. (2010), “Explaining Variational Approxima-
tions,” The American Statistician, 64, 140–153. [214,220,221]

——— (2012), “Gaussian Variational Approximate Inference for Generalized
Linear Mixed Models,” Journal of Computational and Graphical Statistics,
21(1), 2–17. [216]

Pinheiro, J. C., and Bates, D. M. (2000), Mixed-Effects Models in S and S-PLUS,
New York: Springer. [220]

Rasmussen, C. E. (2003), “Gaussian Processes to Speed Up Hybrid Monte
Carlo for Expensive Bayesian Integrals,” in Bayesian Statistics 7, eds. J. M.

TECHNOMETRICS, AUGUST 2012, VOL. 54, NO. 3

D
ow

nl
oa

de
d 

by
 [

G
eo

rg
ia

 T
ec

h 
L

ib
ra

ry
] 

at
 2

0:
10

 2
3 

Se
pt

em
be

r 
20

12
 

http://cran.r-project.org/src/contrib/Archive/iterLap/
http://cran.r-project.org/src/contrib/Archive/lhs/
http://cran.r-project.org/
http://cran.r-project.org/


COMMENT: COMPARISON WITH ITERATED LAPLACE APPROXIMATION 225

Bernardo, M. J. Bayarri, J. O. Berger, A. P. Dawid, D. Heckerman, A. F. M.
Smith, and M. West, pp. 651–659. [215]

Rasmussen, C. E., and Ghahramani, Z. (2003), “Bayesian Monte Carlo,” in
Advances in Neural Information Processing Systems (Vol. 15), eds. S.
T. S. Becker, and K. Obermayer, Cambridge, MA: MIT Press, pp. 489–
496. [209,214]

Rasmussen, C. E., and Williams, C. K. I. (2006), Gaussian Processes for Ma-
chine Learning, Cambridge, MA: MIT Press. [210,211]

Rue, H., Martino, S., and Chopin, N. (2009), “Approximate Bayesian Inference
for Latent Gaussian Models by Using Integrated Nested Laplace Approxi-
mations” (with discussion), Journal of the Royal Statistical Society, Series
B, 71, 319–392. [209,214]

Santner, T. J., Williams, B. J., and Notz, W. I. (2003), The Design and Analysis
of Computer Experiments, New York: Springer. [209,210,213,216,221,222]

Singh, R. K., Joseph, V. R., and Melkote, S. N. (2011), “A Statistical Ap-
proach to the Optimization of a Laser-Assisted Micromachining Process,”
International Journal of Advanced Manufacturing Technology, 53, 221–
230. [221]

Tanner, M., and Wong, W. (1987), “The Calculation of Posterior Distributions by
Data Augmentation” (with discussion), Journal of the American Statistical
Association, 82, 528–550. [209]

Tierney, L., and Kadane, J. B. (1986), “Accurate Approximations for Poste-
rior Moments and Marginal Densities,” Journal of the American Statistical
Association, 81, 82–86. [209]

Comment: Comparison With Iterated Laplace
Approximation

Björn BORNKAMP

Novartis Pharma AG Lichtstraße 35
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1. INTRODUCTION

When using standard kriging for interpolation of positive
functions (such as a nonnormalized posterior density), one ei-
ther ends up with an interpolant that can get negative but can
be integrated analytically, or, when working on log scale, a
positive interpolant that cannot be integrated analytically any-
more. The proposed interpolation technique provides a solu-
tion to this dilemma as the interpolant is (practically) positive
and one can calculate a number of integrals analytically (nor-
malization constant, marginal densities, mean, covariance ma-
trix). This is probably the most important contribution of this
article.

One area where the procedure appears to be promising in
terms of approximation of Bayesian posterior densities is non-
linear modeling in low-to-moderate dimensional situations. Pos-
terior distributions for these models have little general structure
to exploit, so it makes sense to use flexible algorithms that treat
the posterior density like a black box. The procedure seems
to be particularly attractive for computationally intensive non-
linear models (e.g., defined implicitly as solution of a differ-
ential equation that needs to be solved numerically): a clever
choice of evaluation points allows that few evaluations evalu-
ations seem to be required to obtain an adequate approxima-
tion. For example, the sequential algorithm illustrated in the
banana example in section 3.2 of Professor Joseph’s paper ob-
tains a good approximation with spectacularly few target density
evaluations.

I would like to focus my discussion on a comparison with the
iterated Laplace approximation (iterLap) (Bornkamp 2011a,b),
which is an alternative deterministic approximation technique.

2. COMPARISON WITH ITERATED LAPLACE
APPROXIMATION

Although derived from different perspectives, the two meth-
ods share a few similarities: the iterated Laplace approximation
(iterLap) also uses linear combinations of multivariate normals
(to approximate the nonnormalized posterior), low-discrepancy
point sets (aka space-filling designs), quadratic programming,
and sequential exploration of the target density. In a nutshell,
the iterLap starts with a (multiple mode) Laplace approxi-
mation and then sequentially improves this approximation by
adding additional normal distribution components, where the
current approximation is worst. A more detailed description is as
follows:

Iterated Laplace Approximation (iterLap)
Iteration 0:

1. Multiple-mode Laplace approximation: Fit a Laplace ap-
proximation to each mode of h(θ), resulting in an approx-
imation based on a linear combination of multivariate nor-
mals: h̃0(θ) =∑J (0)

j=1 cjφ(θ,νj ,�j ); see (Gelman et al.
2003, chap. 12).

2. Space-filling design: Determine for each component in the
linear combination a “grid” of size n that encloses most of
its probability mass, using a quasi-random sample of the
underlying multivariate normal distribution based on the
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randomized Sobol sequence. This is the same approach
as in section 3.1 for the nanowire example but replacing
the Latin hypercube design with the Sobol sequence. Let
D0 denote the matrix that contains these points in the rows.

3. Evaluation of h(.): Evaluate h(.) at D0, resulting in the
vector h0. Also, evaluate each of the J (0) component den-
sities in the mixture at D0 and write those evaluations in
the matrix F0.

Iteration t:

1. Residual Laplace approximation: In this step, a
Laplace approximation on the residual rt (θ) = (h(θ)−
h̃t−1(θ))+ is performed to obtain a new mixture com-
ponent. Select starting values, where h(θ)/h̃t−1(θ) for
θ ∈ Dt−1 is largest (i.e., the fit is worst). Start a local
optimizer there, resulting in a maximum θ̃. Add the new
mixture component, with J (t) ← J (t−1) + 1, νJ (t) = θ̃ and
�J (t) , the negative inverse Hessian matrix of rt (θ) at θ̃.

2. Space-filling design: Determine a grid Nt of size n for the
new component (as in Step 2 at iteration 0). Add these
points to the current grid Dt−1 to form Dt =

(Dt−1

Nt

)
.

3. Evaluation of h(.): Evaluate h(.) at Nt and append these
evaluations to ht−1 to form ht . Evaluate all components of
the approximation h̃t−1(.) at Nt and the new component at
the entire grid Dt to form Ft .

4. Quadratic programming: Find the coefficients
c1, . . . , cJ (t) by minimizing (ht − F′tc)′(ht − F′tc) subject
to cj ≥ 0 for j = 1, . . . , J (t). The current approximation

of h(θ) is h̃t (θ) =∑J (t)

j=1 cjφ(θ,νj ,�j ), and the current
approximation of the normalization constant is

∑J (t)

j=1 cj .

See Bornkamp (2011a) for more details and recommenda-
tions on how to choose stopping criteria and other tuning pa-
rameters. The procedure has, for example, been successfully
applied in Bayesian calibration of computer models using Gaus-
sian process interpolation; see Kracker (2011).

A main difference is that iterLap is meant to be used as a
proposal distribution for Monte Carlo sampling. The procedure
generates a positive linear combination of multivariate normal
densities, which can be normalized to form a mixture of mul-
tivariate normals and is thus easy to sample. It will in general
not approximate the posterior density arbitrarily well for a large
number of iterations, as it only adds new mixture components
where h(θ)− h̃t (θ) is positive (which is important to obtain a
good proposal distribution), but not where h̃t (θ)− h(θ) is pos-
itive. This would require usage of negative coefficients and/or
additional alterations of the basic algorithm.

The procedure proposed by Professor Joseph interpolates the
posterior evaluations and strives for high-accuracy approxima-
tion. This does not come for free: the approximation is not
necessarily a mixture of normals any more and sampling from
it is no longer trivial. This makes it more difficult to use it
for Monte Carlo sampling. Another cost is that a large number
of components is needed in the linear combination (as many
as there are evaluation points). This becomes computationally
expensive as matrices of large size need to be inverted to cal-
culate the approximation. iterLap typically uses less than 20
components.

Another difference is that the interpolation technique uses the
same matrices � and � for all components, while for iterLap,
each component has its own matrix �. This allows a better adap-
tion to the local behavior of the posterior density, and by this, a
smaller number of components is needed in the approximation.

A difficult task for any computational algorithm for Bayesian
problems is to identify the regions of high probability. Deter-
mining the initial space-filling design by “prior information” is
often not possible in practical situations, when the dimension
is beyond 1 or 2. The proposal for finding the initial design
for the interpolation technique is based on optimization and
the Laplace approximation (note that these function evaluations
have not been counted in the examples in sections 4.1 and 4.2 of
Professor Joseph’s article), so here both methods use the same
approach. For sequential exploration, iterLap adds components
where the approximation error is worst by optimizing the resid-
ual error, while the interpolation technique adds design points
where the conditional prediction variance is largest, which is
identified by starting an optimizer at the point with maximum
cross-validation error. The advantage of the latter approach is
that no target function evaluations are needed to find the next
evaluation point.

Hence, the number of target density evaluations will usually
be larger for the iterLap, due to the repeated optimizations, grid
evaluations, and determination of �, which is currently being
done by calculating the Hessian matrix using finite differencing.
This is a disadvantage if the target density is computationally
expensive.

2.1 Comparisons

I thank Professor Joseph for sending me the code he used for
the examples in his article, which allowed me to evaluate the
computational efficiency of the procedure on an example. All
computations were performed on a computer with 2.30 GHz
and 4 GB RAM.

First, however, I applied iterLap to the banana example of
section 3.2 of his article. With the default parameter settings
from the R package, the procedure uses 11 mixture compo-
nents and obtains a good approximation: the effective sample
size (ESS) for importance sampling using 10,000 samples from
this proposal is ≈ 7200. Building this approximation takes less
than 1 sec on my computer, which is on my computer roughly
300 times faster than the sequential procedure proposed in his
article. The number of function evaluations is roughly 2000. By
fine-tuning iterLap to this problem, one can halve this number
without suffering in terms of the quality of the approximation.

Then, I applied the interpolation technique to an 11-
dimensional nonlinear model, where the posterior distribu-
tion contains some nonlinear features; see (Bornkamp 2011a,
sec. 3.2) for details. Here, iterLap selects 12 mixture compo-
nents using the default settings and building the approximations
takes roughly 6 sec using roughly 25,000 functions evaluations.
Monte Carlo sampling based on this proposal is very competi-
tive with adaptive Markov chain Monte Carlo (MCMC) despite
using less function evaluations in total.

Applying the interpolation technique with 550 function eval-
uations (adapting codes used for the banana example) turned
out to be computationally intensive, finding the � and �
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matrices based on cross-validation took roughly 12 min, with
the main computational burden being the repeated evaluation
and inversions of the 550× 550 matrices G(�) and G(�).
Due to the increased computation time, finding the “optimal”
� and � matrices in each step of the sequential algorithm ap-
peared no longer practically feasible. When adding 450 addi-
tional function evaluations (based on the components selected
by iterLap), computations were considerably slowed down: in-
version of the involved 1000× 1000 matrix took six times
longer compared with the 550× 550 matrix, and one might
expect an increase in the total computation time by a simi-
lar factor. Note that this is roughly in agreement with the fact
that matrix inversion is roughly a O(n3) process (if n denotes
the size of the matrix). From these considerations, it becomes
clear that the interpolation technique, as presented now, will
become quickly infeasible when a large number of function
evaluations is required to obtain an adequate approximation,
as matrix inversions are the main factor driving computation
time.

The essential difference between the two methods is thus in
their usage of target density evaluations. If it is cheap to per-
form a large number of evaluations, it appears iterLap (and also
well-chosen and efficiently implemented MCMC algorithms)
will outperform the interpolation technique, because the inter-
polation technique will itself get computationally intensive due
to the required matrix inversions. If evaluations of the target
are extremely expensive, so that only few evaluations are pos-
sible anyway, the interpolation technique seems to make better
usage of the evaluations performed.

3. FINAL REMARKS

The main computational bottleneck of the proposed proce-
dure is the need to evaluate and invert large-dimensional matri-
ces repeatedly (as in all kriging-type interpolation approaches).
This can get quite computationally expensive, but might pay
off, for example, when the posterior density is extremely time-
consuming to evaluate or when it is of great interest to obtain
a high-accuracy approximation of the posterior density itself.
However, an improvement of the procedure in this regard seems
possible and would certainly be of high interest.

In summary, I would like to congratulate Professor Joseph
for an interesting article that provides an innovative approach
on how to apply kriging-type techniques for interpolation of
positive functions, and I hope Professor Joseph’s article stim-
ulates further research in the application of these methods for
Bayesian computational problems. I would like to end my dis-
cussion with the wish that an implementation of the method will
be made publicly available, with concrete recommendations for
default or automated choices that have been tested on a variety
of example posteriors. The chance that that the methods gets
more widely adopted by applied statisticians will be increased
if an efficient and easy-to-use implementation is provided.
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1. IS DOIT JUST FOR QUASI-MONTE CARLO?

The key idea in this article is to approximate a complex poste-
rior density by a weighted average of normal densities, where the
weights are chosen by fitting a kriging model that interpolates
the unnormalized posterior. The accuracy of approximation de-
pends on the choice of evaluation points, and can be improved by
augmenting additional points. The method therefore is a gen-
eralization of the standard Laplace approximation based on a
single design point, namely a posterior mode. Mathematically
speaking, the proposed DoIt is a case of quasi-Monte Carlo
(QMC), which has an extensive literature on how to strategi-
cally place (deterministic) design points for efficient numerical

integration; for example, see Niederreiter (1978, 1992), Caflisch
(1998), L’Ecuyer and Owen (2009), Dick and Pillichshammer
(2010), and particularly, Stein (1987) and Owen (1998) regard-
ing the use of Latin hypercube design—as used in the article for
the initial space-filling design—for QMC.

A well-known and critical challenge for QMC is the curse
of dimension. DoIt, when used directly for approximating an
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integration, faces the same challenge, as discussed in Section 5
of the article in the context of hierarchical models. A known
strategy for making a QMC method as generally useful as a
genuine Monte Carlo (MC) is to reintroduce randomization into
the QMC method (i.e., the so-called “randomized QMC”) and,
more promisingly, to combine it with an MC method, as dis-
cussed and explored in Owen (1998). However, despite the ex-
tensive literature on both QMC and MC and their shared overall
goal, the overlap of the two literatures is surprisingly small, as
noted in Meng (2005). We therefore thank Joseph for promot-
ing the use of experiment design principles and techniques in
Bayesian computation, with a method that has good potential
to form a basis for an effective hybrid MC because of its clear
statistical construction. In particular, the normal mixture nature
of DoIt makes it a rather convenient and potentially effective
proposal for a Metropolis–Hasting algorithm, especially if it
can be extended further to the t-mixture type of approximations
as investigated by West (1993). Even if there is no need to use
the DoIt approximation as a proposal, it can still provide an
independent (partial) validation of a Markov chain Monte Carlo
(MCMC) method.

With our goal of exploring the possibility of a happy marriage
between QMC and MCMC, we touch upon two main issues in
this discussion. First, as pointed out by Joseph in the last two
paragraphs of his section 1, a line of research in Bayesian com-
putation from computationally expensive black-box posterior
distributions is based on the idea of approximating the logarithm
of the posterior distribution by a Gaussian process (GP) model,
and using the GP-based surrogate model as an approximate tar-
get density for MCMC or hybrid-MCMC sampling (Rasmussen
2003; Fielding et al. 2011). A comparison of the proposed DoIt
algorithm with the GP-based approach, which will be referred
to as GP-MCMC henceforth, is presented in Section 2 of the ar-
ticle. We feel, however, that this comparison might have created
an unintended impression that the effectiveness of GP-MCMC,
as a general strategy, is rather limited. We therefore probe this
comparison a little further in Section 1 of our discussion. Next,
we address an important aspect of the sequential design dis-
cussed in section 3.2 of Joseph’s article: judging the accuracy
of approximation. We propose a Hellinger distance-based crite-
rion for judging the accuracy of approximation in GP-MCMC
and conduct a preliminary exploration with the example used to
compare GP-MCMC and DoIt.

2. CAN GP-MCMC DO WELL WITH FEWER
EVALUATIONS?

In section 2 of Joseph’s article, DoIt and a particular
GP-MCMC algorithm are used to study the following two-
dimensional posterior density with banana-shaped contours
(Haario, Saksman, and Taaminen 2001):

p(θ | y) = φ
( (

θ1, θ2 + 0.03θ2
1 − 3

)′
; (0, 0)′, diag{100, 1}).

As observed from Joseph’s figure 9(a), the DoIt approxima-
tion obtained from a 100-run maximin Latin hypercube design
(MmLHD) chosen from the region [−20, 20]× [−10, 5] does
not give a good fit to the exact distribution. However, after
adding 75 more points, the DoIt approximation captures the
support and the shape of the distribution quite well. For the

hybrid MCMC algorithm proposed by Fielding et al. (2011),
the same 100-run MmLHD is used as the initial design, and
500 and 1500 samples are generated from the exploratory phase
and the sampling phase, respectively. Although the sampling
is very good, as evident from Joseph’s figure 11(b), it is re-
ported to have taken almost 90 min as compared with 3 min
taken by DoIt. Consequently, it is concluded that although both
methods perform well, GP-MCMC is computationally much
more expensive than DoIt.

The comparison raises two important questions. First, is the
complex hybrid MCMC algorithm with parallel tempering pro-
posed by Fielding et al. (2011) really needed for this two-
dimensional example? A simpler MCMC algorithm that uses
the basic idea of sampling from a GP-based surrogate may be
appropriate. Second, assuming that by a “sample” in the ex-
ploratory phase, Joseph means one representative point (typ-
ically the last) point of an MCMC chain, is it necessary to
generate a total of 500 samples (which also means potentially
prohibitively large 500 evaluations of the expensive posterior) in
the exploratory phase to adequately capture the contours of the
distribution? This also raises a related question: what should be
a reasonable guideline to judge whether the surrogate GP model
approximates the posterior distribution well? We will discuss
the second point elaborately in the next section.

At this point, we briefly introduce a rudimentary random-walk
MCMC algorithm using the GP approximation. Let D denote
the exploration region (design space) and π (x) the unnormalized
posterior density of interest. Let π∗ denote the corresponding
normalized density, and assume that the design space is an ade-
quate approximation to its support, that is,

π∗(Dc) ≈ 0, (1)

where Dc denotes the complementary set of D. As in DoIt,
we choose an initial space-filling (e.g., MmLHD) design of N
points in D. Let ŷ(x) denote the ordinary Kriging predictor
(Santner, Williams, and Notz 2003) of log π (x), and s2(x) de-
note the mean squared error (MSE) of the predictor. During the
exploratory phase, we use a random-walk Metropolis algorithm
to sample from the following target distribution:

p(x) ∝
{

exp(ŷ(x)+ s(x)), x ∈ D
exp(ŷ(x)), x ∈ Dc (2)

In the sampling phase, we sample from the target distribution
proportional to exp(ŷ(x)), as proposed by Fielding et al. (2011).
We emphasize here that it is wise to allow our sampling algo-
rithm to go beyond the design space D no matter how carefully
it was chosen in the first place.

Thus, denoting the current state at the (t − 1)th iteration by
x(t−1), we generate the proposal state

x′ = x(t−1) + ε,

where ε ∼ N ((0, 0)′, σ 2diag(1, 1)) with σ 2 = 1. The new state
is obtained as

x(t) =
{

x′ if r (t) ≤ min{1, p(x′)/p(xt−1)}
x(t−1) otherwise

,

where r (t) is a random sample drawn from Uniform[0, 1].
To see how well this algorithm works, we choose an MmLHD

design with N = 30 points and then sequentially generate 20
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Figure 1. Contours approximated from the initial 30-run design (left panel) and after adding 20 points sequentially (right panel). The online
version of this figure is in color.

additional points from the exploratory phase of the aforemen-
tioned algorithm, where each point is the last point of an MCMC
chain of length 2000. The left panel in Figure 1 shows the con-
tour plot generated from the kriging predictor obtained from the
30 initial design points, and the right panel shows the contour
plot after sequentially adding 20 points from the exploratory
phase of the algorithm. In both the panels, the dots represent the
initial 30 points and the numbers in the right panel indicate the
order of points generated sequentially. The left panel in Figure 2
shows an MCMC chain of 10,000 points drawn from the sam-
pling phase using the surrogate density obtained from the 50
sampled points.

We observe that the initial 30-point design approximates the
contour pretty well—in fact, substantially better than the DoIt

approximation based on 100 design points. The approximation
appears to be very good after adding only 20 points using our
rudimentary Metropolis algorithm based on the GP approxima-
tion. The time taken for this entire task was about 7 min, most of
which (about 6 min) was spent on adding the 20 points during
the exploratory phase. Generating 10,000 points during the sam-
pling phase barely took 1 min. Thus, the total time taken by our
GP-MCMC to approximate the posterior as good as one obtained
by using DoIt was found to be more (7 min vs. 3 min, as reported
by Joesph). But our GP-MCMC required far less evaluations
(50 vs. 175), which can be a substantial advantage for compu-
tationally expensive functions. In fact, if one follows Joseph’s
guideline of selecting 50d initial points (where d denotes the di-
mension), then a 100-run initial design provides an excellent GP

Figure 2. A total of 10,000 points generated using 50 (= 30+ 20) design points (left panel) and 100 (= 100+ 0) design points (right panel).
The online version of this figure is in color.
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230 TIRTHANKAR DASGUPTA AND XIAO-LI MENG

approximation of the density, and one can immediately proceed
to the sampling phase, completely bypassing the exploratory
phase. An MCMC chain of 10,000 points generated from the
sampling phase using the GP approximation based on 100 initial
points is shown in the right panel in Figure 2. This entire task,
starting from the generation of the 100 design points to the gener-
ation of 10,000 samples took about 1 min, about one-third of the
reported time taken by DoIt. It is worth noting that our MCMC
scheme here is most inefficient, being a simple random walk
without any tuning of, for example, the variance of a step size ε.

3. IS THE APPROXIMATION ADEQUATE?

The foregoing example reinforces the importance of the ques-
tion raised in Section 1: in GP-MCMC, when should we switch
to the sampling phase from the exploratory phase? In other
words, when do we have enough confidence in the surrogate
model as an emulator of the true posterior? To the best of our
knowledge, this particular aspect has not been adequately ad-
dressed in the literature. Clearly, to make a decision, we need a
criterion that is able to judge the “goodness of fit” of the surro-
gate density. Establishing such a criterion may also be helpful
to judge when a DoIt approximation of a computationally ex-
pensive posterior is good enough.

We now propose a criterion based on the Hellinger distance
between two densities f and g, which is defined as

H (f, g) =
[

1

2

∫ (√
f (x)−

√
g(x)

)2
dx
]1/2

. (3)

It is well known that H (f, g) defined by (3) is related to the Bhat-
tacharya coefficient BC(f, g) given by

∫ √
f (x)g(x)dx through

the following identity:

H (f, g) =
√

1− BC(f, g). (4)

In the current problem, the two densities that need to be com-
pared are the true density π∗ proportional to π , and our sampling
target density p∗ proportional to p, where p is defined by (2).
Let their supports be, respectively, Sπ and Sp. Then, the Bhat-
tacharya coefficient between π∗ and p∗ can be written as

BC(π∗, p∗) =
∫
Sπ∩Sp

√
π (x)p(x)dx√∫

Sπ
π (x)dx

√∫
Sp

p(x)dx

=
∫
Sp

√
[π (x)/p(x)]p∗(x)dx√∫

Sp
[π (x)/p(x)]p∗(x)dx +�

, (5)

where

� =
∫
Sπ∩Sc

p
π (x)dx∫

Sp
p(x)dx

.

Consequently, when Sπ ⊆ Sp, which implies � = 0, the
Bhattacharya coefficient can be easily estimated—as proposed
by Meng and Wong (1996)—by

ˆBC =
1
k

∑k
j=1

√
ζj√

1
k

∑k
j=1 ζj

, (6)

where

ζj = π (ωj )/p(ωj ), (7)

and ω1, . . . , ωk are k draws from p. A beauty of the estimator
in (6) is that it is numerically constrained to be inside the unit
interval, just as its estimand (5). Of course, we need to be mind-
ful that its computation involves k additional evaluations of the
posterior π , so we often will keep k relatively small (compared
with the overall number of draws) if evaluating π is expensive.
[Meng and Wong (1996) adopted the Hellinger distance because
the variance of their bridge sampling estimator is bounded both
above and below by simple functions of the Hellinger distance
between the two densities for which the ratio of their normaliz-
ing constants is the estimand.]

To apply this method, recall that, in the exploratory phase
of our algorithm applied to the banana-shaped function in Sec-
tion 1, we drew 2000 MCMC samples in each iteration and
chose the last sample as our next design point. Because these
2000 points were drawn from p, a subset of these points could
be used to compute ˆBC from (6). Figure 3 shows a plot of the
estimated Bhattacharya coefficients for 20 successive iterations
during the exploratory phase. The coefficients were estimated
using k = 20 points randomly chosen from 2000 MCMC draws
in each iteration. We observe that all the estimated coefficients
are greater than 0.9 (suggesting that the approximation from the
initial 30-run design is reasonable) and appear to converge to
1.0 after about 16 iterations (the solid horizontal line is 0.99).

At this point, it might be tempting to suggest a switching
rule such as: “switch to the sampling phase if m consecutive
estimated Bhattacharya coefficients are above a certain thresh-
old δ.” Cautions are needed, however, for implementing such a
rule. The obvious one is that we need to take into account the
variability in (6) when we compare it to a threshold. This can
be achieved by using a lower confidence bound, say ˆBC − 2τ̂k ,
instead of ˆBC, in making the comparison. Here, τ̂k is an
estimate of the standard error of ˆBC, which can be obtained in
various ways, including direct MC replications using existing
draws (e.g., a part of the 2000 draws in our example) and taking

Figure 3. Plot of the Bhattacharya coefficient. The online version
of this figure is in color.
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advantage of theoretical formulas such as Equation (8.7) in
Meng and Wong (1996). Details will be reported in a future
work.

The more difficult one is to deal with the positive bias in (6)
when our sampling state space Sp fails to cover the actual state
space Sπ . Such a failure is likely in practice even when in the-
ory we design Sp = Sπ (e.g., as in our random-walk algorithm),
because it reflects the very problem we try to resolve, namely
our MCMC algorithm may fail to explore all the regions with
appreciable masses under the desired π ; see Meng and Schilling
(1996) for a numerical illustration of this aspect. Such an over-
estimation, if not taken into account appropriately, would then
lead us to prematurely make the switch with a higher probability
than we plan.

This bias issue is hard to deal with precisely because it is
not possible to use samples inside Sp to explore masses outside
Sp under π , unless we use the knowledge of how masses outside
Sp are related to those from inside of it. Such knowledge, for
example, may provide us with a convenient upper bound on the
relative overestimation, which then would allow us to adjust the
threshold δ to prevent (statistically) the premature switching.
Clearly, a thorough investigation of such issues is needed, and
so is an in-depth investigation of the effects of k, m, and δ (in the
switching rule) on the computation time and cost under different
situations. Furthermore, in our example, we required 20× 20 =
400 evaluations of the posterior π simply to judge the accuracy
of approximation. To circumvent this problem, one can, for
example, consider estimating the Bhattacharya coefficient at an
interval of several iterations during the exploratory phase.

There are, of course, multiple ways to improve both the com-
putational efficiency and the statistical efficiency of such al-
gorithms, leading to a good number of interesting and useful
research projects. We therefore want to thank Joseph again, not

only for proposing DoIt, but also for inspiring us to search for
those hybrid MCMC methods that will do well.
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1. OVERVIEW

The innovative article by Joseph (2012) incorporates some
elements from the computer modeling literature and further
develops them for the all-important question in Bayesian statis-
tics of approximating a complex posterior distribution. Markov
chain Monte Carlo (MCMC) has made all posterior distributions
accessible in theory, but the amount of computing time needed
to get a good estimate can easily exceed available resources. The

article provides a promising new approach when the posterior
is expensive to evaluate.

© 2012 American Statistical Association and
the American Society for Quality
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Computer modeling entails statistical inference through the
use of a computer simulator. Typically, the statistician works in
collaboration with subject area scientists who have developed
a detailed simulation of a process, such asclimate modeling,
computer chip design, or social networking. Thus, evaluating
the likelihood requires a run of the computer simulator, which
could take hours, days, or even months, depending on the
simulator. With expensive simulators, the number of likelihood
evaluations will necessarily be limited, and thus, posterior
estimation becomes difficult. MCMC can be impractical. A
common approach is surrogate modeling with a Gaussian
process interpolator (Sacks et al. 1989; Santner et al. 2003).
Alternatives include importance sampling (Taddy, Lee, and
Sansó 2009). The method proposed by Professor Joseph is
an intriguing new approach that may allow for more accurate
approximations with limited function evaluations. It has great
potential to improve Bayesian inference in computer modeling.

2. BAYES

I find it a bit ironic that in approximating a Bayesian posterior
density, we end up using a single point estimate. DoIt uses a
single value for the coefficients ci , and a single estimate of
the approximating variance �. Particularly, when the mode is
unknown, we know there will be uncertainty present. In a fully
Bayesian analysis, should we take that into account? It would be
more computational effort, but we could think about a Bayesian
approach to estimating �, instead of using a cross-validation
approach. It could be useful to explore how much uncertainty
there is, and whether or not it is worth the extra effort to take it
into account.

3. UNKNOWN MODES AND SEQUENTIAL DESIGN

When the posterior mode is unknown, or indeed, the problem
is multimodal and all modes are unknown, it may be useful to
spend a little computing power to actually explore for the modes.
The optimization literature contains quite a number of efficient
algorithms for derivative-free black-box optimization, methods
that could be applied directly here. An example is pattern search
(Hough, Kolda, and Torczon 2001), which is an efficient local
optimization algorithm. Thus, some likelihood function evalua-
tions could be given to the optimization routine, allowing better
information about the mode(s). Pattern search is particularly
useful here, because it is easily combined with the general func-
tional exploration in section 3.2 of Joseph’s article. One could
interweave the evaluations in a style analogous to the hybrid
optimization methods in Taddy et al. (2009). This would allow
improvement in the approximation by simultaneously reducing
uncertainty about the locations of the modes and increasing in-
formation about the rest of the function. Pattern search could
quickly find the modes, with those function evaluations still be-
ing useful for improving the overall fit, while other function
evaluations would be directed toward less-explored regions of
the input space to address overall fit. Mode hunting will also
naturally concentrate more observations in the regions of the
modes, which is helpful for the approximation.

4. INTERPOLATION

One common assumption in the computer modeling literature
is that when the simulator is deterministic, that is, every time it
is run with the same inputs, it will always produce the same out-
puts, one should always interpolate the results. Joseph’s article
does not insist on strict interpolation, and I think that is a good
thing.

The article acknowledges that basic DoIt can lead to negative
estimates of the density, and that one way to ameliorate these re-
sults is to shrink the resulting density using a guide density such
as a normal density. Since all of the data points will necessarily
be nonnegative, a good approximating function would typically
also be nonnegative. It is the insistence on interpolation that
opens a wide door for negative coefficients ci . To exactly fit a
set of points with a particular smoothness, interpolators can oc-
casionally stray very far from the observed points. By allowing
just a little bit of flexibility in the fit, this effect can usually be
made to go away. Allowing just a little shrinkage on the data
can greatly improve the chances that the fit will be everywhere
nonnegative. In practice, this is equivalent to assuming a small
amount of error in the observations, or doing a small amount of
smoothing in the fit. In the parlance of kriging, this is equivalent
to using a small nugget term. In a conceptual sense, instead of
the shrinkage to a distribution as proposed in the article, one
could do shrinkage directly on the data, which results in the
well-understood model of a Gaussian process with measure-
ment error. In any case, the improvement to DoIt method of the
article does involve shrinkage, and thus, is no longer a strict
interpolator.

In the broader perspective, the common insistence on strict
interpolation may be unjustified. When data are plentiful and
the function is relatively simple, then interpolation is straight-
forward. When the assumptions may be questionable, or the
data are sparse, is interpolation always best? Gramacy and Lee
(2012) have given several examples where allowing just a little
shrinkage or smoothing can outperform interpolation on deter-
ministic functions. In practice, interpolation can lead to poor
results when something unexpected happens. With nonlinear
functions in high dimensions, how often are you sure that there
will be nothing unexpected?

In conclusion, I would like to thank Professor Joseph for his
innovative article, which may help improve Bayesian inference
for complex problems.
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Comment
John T. ORMEROD
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Sydney 2006, Australia
(john.ormerod@sydney.edu.au)

M. P. WAND

School of Mathematical Sciences
University of Technology

Sydney, Broadway 2007, Australia
(Matt.Wand@uts.edu.au)

The author is to be commended on the development of this
new piece of methodology, which he names DoIt. We believe
that the method has the potential to be an important element
in the kit-bag of methods for approximate Bayesian inference.
Throughout the article, a number of criticisms have been leveled
toward variational approximations, of which variational Bayes
(VB) is a special case. As much of our recent research has been
in this area, we will focus our comments in defense of this
methodology.

As a basis for comparison between methods, we adapt the
criteria listed in Ruppert, Wand, and Carroll (2003, sec. 3.16),
upon which scatterplot smoothers may be judged, to criteria for
general statistical methodology:

• Convenience: Is it available in a computer package?
• Implementability: If not immediately available, how easy

is it to implement in the analyst’s favorite programming
language?
• Flexibility: Is the method able to handle a wide range of

models?
• Tractability: Is it easy to analyze the mathematical proper-

ties of the technique?
• Accuracy: Does the method solve the problem to sufficient

accuracy?
• Speed: Are answers obtained sufficiently quickly for the

analyst’s application?
• Extendibility: Is the method easily extended to more com-

plicated settings?

Concerning the convenience criterion, we note that VB is part
of the Infer.NET computing framework (Minka et al. 2010). The
Infer.NET framework can be used in any of the .NET languages,
which includes C#, C++, and Visual Basic, and implements the
expectation propagation and Gibb’s sampling algorithms in ad-
dition to VB. The use of Infer.NET for some simple statistical
models is illustrated in Wang and Wand (2011). Although DoIt
is a new idea, we look forward to its implementation in a com-
monly used statistical environment such as R.

The Infer.NET framework is still in its infancy and does not
support all models for which VB algorithms can be derived. In
such cases, the analyst has to implement VB in his/her favorite
programming language.

Under this implementability criteria, VB can also have an
advantage over DoIt. The article describes DoIt over several
pages. But the algorithm can summarized in the following set
of steps, with some notational changes that we believe improve

digestibility. Joseph uses diag(v) to denote the diagonal ma-
trix with diagonal entries corresponding to the vector v and
diag(M) to denote the diagonal matrix formed when the off-
diagonal entries of the square matrix M are set to zero. Fol-
lowing Magnus and Neudecker (1988), we use dg(M) for the
latter to avoid having different meanings of “diag.” We also use
v > 0 to denote all entries of a vector v being positive:

1. Choose a design D = {θ1, . . . , θm} within the parameter
space (discussed below) and set

h =

⎡⎢⎣ p ( y, θ1)
...

p ( y, θm)

⎤⎥⎦ .

2. Define the m×m matrix G(σ ) to have (i, j )th entry

|diag(σ )|−1 exp

[
−1

2
(θ i − θ j )T {diag(σ )}−2(θ i − θ j )

]
.

Solve

σ̂ = argmin
σ>0

[
hT G(σ )−1{dg(G(σ ))}−1G(σ )−1h

]
.

3. Solve

ĉ = argmin
c≥ 0

{
1

2
cT G(σ̂ )c− hT c

}
.

4. Define

z ≡ {diag(G(σ̂ ) ĉ)}−1 h and

a(λ) ≡ ĉT G
(√

σ̂ 2 + λ2
)
G(λ)−1 z

ĉT G
(√

σ̂ 2 + λ2
)
G(λ)−11

for m× 1 vectors λ. Here,
√

σ̂ 2 + λ2 is the m× 1 vector
defined by taking element-wise squares and square roots,
and 1 is an m× 1 vector of 1’s. Solve

λ̂ = argmin
λ>0

[{z − a(λ)1}T G(λ� σ̂ )−1{dg(G(λ� σ̂ ))}−1

×G(λ� σ̂ )−1{z − a(λ)1}],

© 2012 American Statistical Association and
the American Society for Quality
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where λ̂� σ denotes the element-wise product of λ̂ and
σ .

5. The approximation to the posterior density function
p(θ | y) involves simple calculations involving D, σ̂ , ĉ,
and λ̂, given by (13) and (14) in the article.

The DoIt algorithm may need to follow steps 1–4 many
times to determine a good design set D, which is chosen dif-
ferently depending on whether the posterior mode is known.
If the posterior mode is known, then D is chosen to follow a
Latin hypercube design based on the Laplace approximation
of the posterior density. If the posterior mode is unknown,
or if the Laplace approximation is judged to be inaccurate,
then D is built sequentially by solving an additional suite of
multidimensional optimization problems. The starting points
for these maximization problems are obtained by choosing a
point in the neighborhood of the θ i with the largest approx-
imate leave-one-out error (specific details for this step are
vague on how this neighborhood is chosen). The DoIt algorithm
stops adding points to D when an approximate cross-validation
criterion-based criterion is judged to be sufficiently accurate.
The minimization problems are solved using the Nelder–Mead
algorithm, which does not require derivative information. The
algorithm contains many subproblems. Each of these subprob-
lems may require some tuning for DoIt to obtain reasonable
results. Termination criteria may need to be adjusted, mul-
tiple starting points may be required to ensure Steps 2 and
4 do not obtain poor results, and the size of the neighbor-
hood used for sequential updates of the design may need ad-
justing. Consider the longitudinal data analysis example con-
sidered in section 4.1 of the article. The VB algorithm for
this analysis, corresponding to algorithm 3 of Ormerod and
Wand (2010), requires 10–15 lines of simple R code to im-
plement and no tuning. In comparison, DoIt requires several
multidimensional constrained optimizations and, possibly, some
tuning.

The DoIt algorithm has been custom-designed for models in-
volving continuous random variables with continuous joint dis-

tributions (implied by Theorem 1). Provided that the problem
falls into this category, DoIt appears quite flexible. In particular,
results for the nonlinear regression in section 3.1 are quite im-
pressive and we do not know of a variational approximation for
obtaining suitably accurate approximations for problems of this
type. Furthermore, the only other non-MCMC (Markov chain
Monte Carlo) method that we are aware of, suitable for this
type of problem, is the iterLap method of Bornkamp (2011a).
However, VB is applicable in situations for models with both
discrete and continuous random variables, and it is not lim-
ited to joint distributions that are continuous. For example, the
VB method has been successfully applied to Gaussian mixture
models (McGrory and Titterington 2007) and hidden Markov
models (McGrory and Titterington 2009), and has an advan-
tage over DoIt in this setting. Furthermore, when the prior is
discontinuous, for example, if the horseshoe prior of Carvalho,
Polson, and Scott (2010) is employed, then VB can be applied
(Neville, Ormerod, and Wand 2012). In such a setting, it is un-
clear whether DoIt needs a prohibitively large number of design
points to obtain a sufficiently accurate approximation. In short,
for the criteria of flexibility, VB can handle some models DoIt
cannot and vice versa.

Both methods are simple and fairly easy to understand how
answers are obtained. We admit that few theoretical devel-
opments for variational approximations have been made and
those that exist are context-specific (Hall, Humphreys and Tit-
terington 2002; Wang and Titterington 2006; Hall, Ormerod
and Wand 2011; Hall et al. 2011; Ormerod and Wand 2012).
In terms of tractability, Gaussian interpolation is a reasonably
well-understood technique (e.g., Fasshauer 2007). As noted in
the article, most results for bounding errors for such interpo-
lation methods rely on the fill-distance of the design points.
We do not know of results for obtaining good designs in high-
dimensional spaces. Thus, we concur that a direct application of
DoIt, without using some type of dimension reduction, would
be unsuitable for high-dimensional problems. In comparison,
VB has been successfully applied in genetic association stud-
ies, where the problems can involve parameters numbering in

Figure 1. A comparison of tangent-based variational approximations (JJ), Gaussian variational approximations (GVA), and MCMC for the
bronchopulmonary dysplasia example in Wand (2009).
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Figure 2. Posterior density estimates for the inverse variance components using VB and the grid-based variational approximation described
in Ormerod (2011).

hundreds of thousands (Logsdon, Hoffman, and Mezey 2010;
Carbonetto and Stephens 2011).

Criteria accuracy and speed could be considered together
as one is often traded against the other. Furthermore, these
should be considered in the context of the application at hand.
Consider again the longitudinal data analysis example con-
sidered in section 4.1. Joseph describes the VB approxima-
tions for the variance components as “poor.” We would call
them “reasonable.” Furthermore, these approximations, using
a näive implementation in R (which does not take advan-
tage of the random-effects structure), takes around 0.01 sec
to compute on the first author’s laptop. If, in the context of the
analysis, the analyst was only interested in the posterior ap-
proximations of the coefficients, then VB would be the ideal
choice for this problem. It is hard to compare DoIt with this
in mind as the article does not report how long DoIt takes to
solve this problem, but we anticipate that VB would compare
favorably.

Our second objection to the comparison with variational ap-
proximations with DoIt is that all variational approximations
are lumped together. For example, in section 2.5 of the article,
DoIt is compared with the tangent-based variational approx-
imation of Jaakkola and Jordan (2000), which we denote by
JJ. For this problem, JJ can be markedly inferior to Gaussian
variational approximation (GVA) (Ormerod and Wand 2012),
as we now demonstrate. Consider the example presented in
Wand (2009, sec. 6) in Figure 1 where JJ and GVA are applied.
Clearly, GVA, like DoIt, appears adequately accurate for this
problem, whereas JJ does not. Similarly, again considering the
longitudinal data analysis example considered in section 4.1,
the article compares the VB method described in Ormerod and
Wand (2010) when other variational approximations are supe-
rior in terms of accuracy. Consider, in Figure 2, the grid-based
variational approximation of Ormerod (2011). This approxima-
tion, like the structured mean field variational approximation
described in Wand et al. (2011), offers a general method for
improving variational approximations, albeit at the expense of
speed. Using grid-based variational approximations, adequate
approximations for the marginal posterior densities of the vari-
ance components can be obtained. In this regard, the article
appears to be making a straw-man argument against variational
approximations.

An attraction of VB is that relative ease with which it can
be extended to handle complications such as missing data. This

follows from the locality property of VB, which, as with MCMC,
means that algorithmic components are localized on the directed
acyclic graph of the Bayesian model (e.g., Wand et al. 2011,
sec. 3). In Faes, Ormerod, and Wand (2011), we demonstrated
the extendibility of VB to handling missingness in regression
models. Since missingness leads to an increase in the size of the
Bayesian model (an increase in the number of hidden nodes in
graph theoretical language), we would expect DoIt to run into
difficulties for such models.

In summary, we believe that, while DoIt is a worthy addition
to non-MCMC analysis and that the results presented in the
article are impressive, variational approximations still offer a
competitive alternative for many problems, depending on the
analyst’s weighting of the aforementioned criteria.
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Field Variational Bayes for Elaborate Distributions,” Bayesian Analysis, 6
(4), 847–900. [235]

Wang, B., and Titterington, D. M. (2006), “Convergence Properties of a General
Algorithm for Calculating Variational Bayesian Estimates for a Normal
Mixture Model,” Bayesian Analysis, 1, 625–650. [234]

Wang, S. S. J., and Wand, M. P. (2011), “Using Infer.NET for Statistical Anal-
yses,” The American Statistician, 65, 115–126. [233]

Comment: DoIt—Some Thoughts on How to
Do It

David M. STEINBERG

Department of Statistics and Operations
Research, The Raymond and Beverly

Sackler Faculty of Exact Sciences
Tel Aviv University

Tel Aviv 69978, Israel
(dms@post.tau.ac.il)

Bradley JONES

SAS Institute, SAS Campus Drive
Cary, NC 27513

(Bradley.Jones@jmp.com)

Computational methods to explore posterior distributions, in
particular Markov chain Monte Carlo (MCMC), have played a
dominant role in Bayesian statistics over the last 30 years. These
methods have enabled statisticians and researchers to tackle
problems that defy closed-form solution, greatly expanding the
scope of Bayesian analysis.

Joseph’s ingenious DoIt algorithm uses ideas developed over
the last 20–25 years on statistical modeling of deterministic
functions to develop a direct approximation to complex pos-
terior distributions, without the need for the large sequential
samples required by MCMC. The method can be applied to a
wide variety of problems and offers the promise of accurate re-
sults with substantially reduced computing. The approximation
is a weighted sum of Gaussians, which leads to the significant
advantages that it is simple to normalize and it is easier to com-
pute marginal densities. We think that the method has great
potential and applaud Dr. Joseph for this important new idea.
Our comments focus on some issues where we think further
work might lead to additional improvements in the method.

1. THE DOIT POSTERIOR DENSITY
APPROXIMATION

The DoIt approximation is a linear combina-
tion of basis functions of the form g(θ; νi ,�) =
exp{−0.5(θ− νi)′�−1(θ− νi)}, where νi is an evalua-
tion point and � plays the role of a covariance matrix in
a multivariate Gaussian density. The matrix � is clearly
important in determining the quality of the DoIt approximation.
But there are three important issues to consider: (1) What
happens if the variances are too large? (2) What happens if the
variances are too small? (3) What happens if the orientation is
chosen poorly?

To see what can happen when the variances are too large, we
consider the nonelliptical posterior density from Haario et al.
that is studied in section 3.2. There is a single posterior mode
at (0,3). The second derivatives of log [h(θ)] at the mode lead
to a diagonal covariance matrix whose entries are 100 and 1,
respectively. Even for evaluation points very close to the mode,
the associated Gaussian basis functions assign nonnegligible
density to θ values that have negligible posterior density (e.g.,
θ= (15,3), with ν at the mode). With evaluation sites in the same
region, the kriging predictor will “correct” for this error, but to
do so, it must assign some basis functions positive coefficients
and others negative coefficients. So, the problem of potentially
negative density values is compounded. In this case, we think
that it would be beneficial to “shrink” the variances (relative
to the second derivatives) for the purpose of fitting the DoIt
approximation. The fraction of negative coefficients in the initial
DoIt fit could be a useful diagnostic here—a large fraction of
negative coefficients may suggest that the variances are too
large.

Large variances can also cause computational problems. The
initial kriging estimator involves solving the linear system
Gc = h, in which G is a correlation matrix. With large vari-
ances, G may be an ill-conditioned matrix for which the solu-
tion is numerically unstable. For the Haario et al. example with
our cross-validation estimates of the variances, 20 of the 100
singular values of G were effectively 0.

On the other hand, the problem of having variances that are
too small is that the Gaussians centered near the mode will fail to
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assign positive density to a sufficiently wide range of θ space.
DoIt addresses this problem directly by including Gaussians
centered away from the mode. Working with variances that are
too small will thus result in more evaluation sites than are really
necessary if the true posterior is approximately multivariate
Gaussian. However, if the posterior is not multivariate Gaussian,
then it seems to be much safer to use smaller variances and to
compensate by adding evaluation sites. We wonder, in fact, if
it would not be good general practice to always use variances
smaller than those suggested by the second derivatives.

The orientation of � relates to the correlation among the
parameters. Imagine having two parameters whose posterior is
very close to multivariate normal with a correlation above 0.9. A
single normal density, centered at the mode and with the correct
covariance, will provide a good approximation to the posterior.
An approximation using only normal densities for two indepen-
dent random variables, though, will require a large number of
evaluation sites to approximate the posterior. In the absence of
second-derivative information, DoIt proceeds by working with
a diagonal �, that is, by summing densities of independent
Gaussians. This approach will require many evaluation sites to
compensate for the lack of orientation. Moreover, the orientation
issue can team up with that of determining the variances. If we
need to sum many independent Gaussians to approximate a cor-
related posterior, DoIt should be more successful with “local”
Gaussians, that is, with variances that are distinctly smaller than
the marginal posterior variances. We are convinced that the di-
agonal elements of � should be close to the marginal variances
only if there is accurate information on orientation.

The above arguments suggest that substantial improvements
to DoIt might be possible via better choice of �. One option is
to compute a first approximation to the posterior from an initial
sample of points, use that first approximation to estimate the
posterior covariance matrix, and perform a further approxima-
tion using that estimate as � in place of the original diagonal
matrix. One might take this a step further and attempt to derive
local versions of � for each evaluation site. For example, with
the posterior density of Haario et al., the orientation of � should
no doubt depend on the evaluation site, with independence near
the mode (as indicated by the second-derivative information at
the mode), positive correlation in the “lower-left” branch and
negative correlation in the “lower-right” branch of the density.
Perhaps, the initial DoIt density estimator could be used to com-
pute such local orientation information.

The current DoIt method seems best suited to posteriors in
which the parameters are nearly independent. Thus, it might be
worthwhile to think carefully about the parameterization so that
near independence is achieved. Of course, in many problems
that will be difficult to accomplish.

Should all the evaluation sites be retained for computing the
approximation? As proposed, DoIt includes all the evaluation
sites in the approximation to the density. Can a good approxima-
tion be computed using just a subset of these sites? The entries
in the matrix G can be viewed as correlations, in which sites
that are “close together” (in the metric defined by �) have high
correlations. It is well known that the presence of sites that are
close to one another can cause G to be seriously ill-conditioned.
We already noted that we encountered such a problem for the
Haario et al. example with our sample of 100 points. So, one

advantage of “thinning” the sites is to improve the condition
number of G and avoid potential computational error. Sites that
are located in regions of very low posterior probability are likely
to have very small coefficients, so eliminating them altogether
might not degrade the approximation. Developing clear rules,
though, for which sites to drop is a challenging problem.

In section 2.3, Joseph shows how his initial DoIt estimator
can be modified to obtain a convex combination of Gaussian
densities, which must be nonnegative. He uses quadratic pro-
gramming to find this estimator. An alternative computational
strategy is to use nonnegative least squares; see Lawson and
Hanson (1995) for details.

The final DoIt approximation takes the convex combination
of Gaussian densities and multiplies it by a linear correction
term. The tuning constant a in the correction term is estimated
as the weighted average of the ratios zi = h(νi)/w(νi), where
h is the unnormalized, computed posterior density and w is
the approximation to h based on the convex combination of
Gaussians with nonnegative coefficients (the DoIt approxima-
tion in Equation (9), but for the unnormalized density). If this
mixture of Gaussians is a good approximation, all the ratios
should be close to 1. Averaging ratios, which are naturally asym-
metric, is a risky endeavor; we worry that some unusually high
ratios, even when downweighted by the estimated density in
(9), could lead to a poor estimate of the tuning constant. At the
least, we would recommend checking the values of the ratios
before averaging. If an automatic computation is needed, we
would suggest averaging the log ratios (perhaps with trimming
to remove any wild ratios) and then exponentiating back to the
ratio scale to estimate a in the correction term.

Joseph’s DoIt method approximates the posterior density di-
rectly, whereas Bliznyuk et al. (2008) and Fielding et al. (2011)
proposed approximations to the log of the posterior density.
Joseph conjectures that the DoIt approximation is more suc-
cessful, especially for multimodal densities, because they are
more likely to be additive when they are not logged. An al-
ternative explanation is more closely tied to the nature of the
kriging approximation used by Joseph. The kriging approxima-
tion involves a linear combination of basis functions that are
derived from the Gaussian process (GP) correlation function.
In DoIt, the basis functions are densities and it is not surpris-
ing that a linear combination of densities is more successful in
approximating a density than in approximating a log density.
Further, the kriging predictor tends to 0 as it moves away from
the evaluation sites; this is desirable in the density scale, but
not in the log density scale, where we need to have arbitrarily
small values as θ moves away from the modes. For example, if
the posterior is approximately normal, the log density decreases
quadratically. To reproduce this behavior in the kriging model,
one would need a regression model with second-order effects
in all components of θ , adding many additional parameters to
the GP. Thus, modeling the log density by kriging and expo-
nentiating back to approximate the density does not look like an
attractive option.

2. THE SAMPLING STRATEGY

Joseph makes two constructive suggestions for locating the
initial sample of evaluation points: (1) identify posterior modes
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and locate points about the modes, ideally in a manner that
reflects covariance, estimated from second derivatives at each
mode, and (2) take evaluation points that reflect the prior. Neither
method guarantees a good initial sample. Consider again the
posterior density from Haario et al. that is studied in section 3.2.
The initial DoIt sample based on the modal information will be
an ellipse of points parallel to the axes, with−30 < θ1 < 30 and
0 < θ2 < 6. This initial sample will miss the region where the
density is large for smaller values of θ2 and will cover large
regions where the density is very close to 0.

In the nanowire experiment (section 3.1), Joseph based the
initial evaluation sample of 600 points on the maximum like-
lihood estimate (MLE). Figure 6 in Joesph’s paper shows that
the sample has most values of γ3 in the interval [2.8,3.8] and
most values of γ4 in the interval [2,2.65]; the corresponding in-
tervals for θj = exp(γj ) are [16.4,44.7] and [7.4,14.2], respec-
tively. The posterior densities plotted in figure 7 show substantial
probability outside these intervals for both parameters.

Basing an initial sample on modal information will also run
aground if there are multiple modes and not all are identified.
We have observed disjoint modes in some nonlinear regression
problems. For example, in seismic event location, there can
be completely isolated posterior modes if the array of seismic
stations that detect the event does not provide good triangulation.
(In the extreme case, imagine all the stations are located on a
north–south line. It will be impossible to know if signals arriving
at the stations have come from the east or the west of the stations
and there will be matching modes on either side. Stations are
never fully linear, but sometimes approximately so, for example,
in locating an offshore seismic event.)

It is also not clear what to do if the parameter has a fixed limit
and the MLE is at or near the limit. A common example would
be a variance component whose MLE is 0. In the binomial ex-
ample in section 2, the MLE for the probability is 1 and θ has
a monotone increasing likelihood; however, it is not difficult
to combine the likelihood with the prior to find the posterior
mode, which is finite. In that example, Joseph adopts the alter-
native parameter θ , which is not bounded to an interval. The
same strategy is used for the Poisson parameter in the leading
example, where the analysis is done for log(θ ). We think that
such transformation will generally be good practice with DoIt.

Taking an initial sample from the prior is less appealing. With
the Bernoulli example, the binomial parameter is limited to [0,1]
and the prior assigns mass to a wide range of probabilities, with
much of the mass on extreme probabilities near 0 or 1. Suppose,
though, that one had a location parameter or a regression coef-
ficient in the model. Many Bayesian analyses assign flat priors
to such parameters; for example, see section 4.1 in the article.
Sampling from the prior is then not an option. Priors that are ap-
proximately flat (e.g., a normal prior with a very large variance)
could lead to evaluation points that miss the modes completely
unless the number of initial points is quite large, especially in
higher dimension.

There is always some potential to miss the regions of high
posterior density, even when the posterior mode is known. For
example, if the parameters have high posterior correlation, there
may be only a narrow region where the posterior density is non-
negligible. The evaluation sample may have almost no over-

lap with that region unless the mode and the correlation are
known.

One of the important features of DoIt is the ability to cor-
rect an initial approximation by adding new evaluation sites.
Joseph’s strategy for selecting sites has three components:
(1) choose where the density is large, (2) choose where the
kriging predictor suffers from uncertainty, and (3) choose near
an existing, but poorly predicted, evaluation site. Point (3) is
optional and is recommended if the other criteria may lead
to many local optima. Intuitively, all three criteria appear
reasonable, but some words of caution are also necessary. Our
most important concern is that the region over which criterion
(19) in the article is optimized is not explicitly stated. If new
evaluation sites are limited to the region from which the initial
sample was chosen, many points with high density might be
ruled out; see our earlier discussion of the initial sample for
the Haario et al. example based on second derivatives. Point (3)
suggests searching locally about an existing evaluation site, but
it is not clear how that local region should be defined. We agree
that some flexibility may be needed here, but at the least, more
detailed guidelines are important.

Avoiding evaluation sites where the density is small is appeal-
ing. However, this may not meet objectives. If the goal is to have
an especially good assessment of the posterior probability of a
particular region in θ space, we will most likely want evaluation
sites there, even if the density is small. If we need to compute
a tail probability or a credible region, it may be important to
add sites where the density is small. Another concern is that we
do not know the density, so must rely on our current estimate.
If our current estimator has missed some region where there is
an additional mode, the sampling scheme assures that we will
continue to miss it. We may be interested in transformations of
the parameters; values with high density for the parameters of
interest may fail to have high density for the parameters used
in modeling. Finally, sampling only in the vicinity of existing
evaluation sites is reasonable only if we already have a broad
sample that extends beyond the region where the density is non-
negligible. Going back to the nanowire experiment, with the
knowledge that the posterior density places nonnegligible mass
outside the points in the initial sample, it seems essential to add
some evaluation sites that are more extreme.

3. SUMMARY

Our comments are intended to generate discussion about pos-
sible improvements to and limitations of the DoIt method. Al-
though we have focused on those aspects, we want to reaffirm
our belief that DoIt has potential to be a useful tool for Bayesian
inference, especially for problems involving few parameters.
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It was a pleasure and honor to read the in-depth and thought-
provoking discussions on DoIt. I thank the Editor for organizing
the discussions and all the discussants for sharing their valuable
insight of the methodology. In this rejoinder, I will focus my
attention on some of the main issues raised in the discussions
and respond to them in the following four sections.

1. COMPARISONS

The discussants have compared the DoIt approximation to
several alternative methods for Bayesian computation, which
have unearthed some of the shortcomings of DoIt and paved the
way for its improvement. These are discussed below.

1.1 Variational Bayes

Professors Ormerod and Wand revisit the orthodontic exam-
ple of Section 4.1 and compare VB with DoIt in terms of speed
and accuracy. Hundred iterations of the VB algorithm given by
Ormerod and Wand (2012) took about 0.06 sec in my desktop,
whereas DoIt took about 6 sec. This shows that VB is 100 times
faster than DoIt in this particular example. However, this does
not include the set-up time for deriving the VB algorithm given
by Ormerod and Wand (2012) and also the time for writing a
code for implementing it. On the other hand, the DoIt implemen-
tation is easy. The four steps given in the discussion by Ormerod
and Wand remain the same irrespective of the problem. The user
needs to update only the likelihood and prior. Thus, if the setup
and coding times are also taken into account, one will find DoIt
producing results in much shorter time than VB.

The VB approximation produced about 30% error in the vari-
ance estimates of the two variance components, whereas the es-
timation error with the DoIt approximation is negligibly small.
The grid-based variational approximation proposed by Ormerod
(2011) offers a promising method for improving the accuracy
of the VB approximation. Interestingly, DoIt can also be used
for this purpose. Conversely, VB can be used to improve the
DoIt approximation whenever the VB implementation is read-
ily available.

Consider again the orthodontic example. The Laplace approx-
imation gives β̂ = (23.81, 0.66, 1.16)′, γ̂ε = log σ̂ 2

ε = 0.705,
and γ̂u = log σ̂ 2

u = 1.1096, whereas the VB estimates of the
posterior mode are β̂ = (23.81, 0.66, 1.16)′, γ̂ε = 0.717, and
γ̂u = 1.183. We can see that although the estimates of the
fixed effects are unchanged, there is significant change in the
estimation of the variance components. The estimates from

the VB are better than those from the Laplace approximation
and, therefore, a better design for DoIt can be generated using
these VB estimates instead of the Laplace’s estimates. I sam-
pled m = 50 points using the maximin Latin hypercube design
(MmLHD), but centering at the VB estimate. The results are
plotted in Figure 1. We can see that the VB approximation on
the variance components are substantially improved using the
DoIt approximation and is reasonably close to the 250-point
DoIt approximation produced in Figure 12 of Section 4.1. For
comparison, the 50-point DoIt approximation using the original
Laplace approximation is also plotted in the same figure, which
is not as good as the VB+DoIt approximation.

I completely agree with Ormerod and Wand that VB can
handle some models that DoIt cannot and vice-versa. Thus, an
integration of these two techniques can potentially mitigate their
deficiencies and produce much better results in some applica-
tions.

1.2 Iterated Laplace Approximation

Dr Bornkamp has given a very clear exposition of the ad-
vantages and disadvantages of DoIt and iterLap. Consider the
comparison he made in Section 2.1 using the banana example.
The iterLap technique identified 11 mixture components, which
fits the posterior beautifully and in much less time than what it
took for DoIt using the sequential design. I will show here that
with a slight twist in the implementation, DoIt can do better! In-
stead of the 100-run MmLHD, I generated a 500-run MmLHD
and removed points for which hi is less than 1% of the maxi-
mum observed value (maxi hi). This idea of using a subset of
points was suggested by Professor Steinberg and Dr. Jones in
their discussion. This approach removed 323 points resulting in
a design of 177 points. The DoIt approximation obtained us-
ing these 177 points is shown in Figure 2. We can see that it
gives an excellent approximation, which is obtained using only
a quarter of the number of function evaluations used by iterLap.
The fitting took about 2.3 sec in my desktop, slightly more than
iterLap. I suspect that the DoIt fitting time can be reduced if my
rudimentary R code can be transferred into C++ source code.

© 2012 American Statistical Association and
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Figure 1. Comparison of VB and DoIt using m = 50 points for the variance components in the orthodontic example. The online version of
this figure is in color.

However, this approach of generating a large design and re-
moving points from low probability regions loses its appeal in
high dimensions where the points can be sparse. Moreover, if
the function evaluations are expensive, then removing points
from the design can be quite wasteful. Therefore, it is important
to develop an efficient algorithm that can quickly generate a
space-filling design in high-probability regions. I believe that
such an algorithm is possible and will be developed in the near
future.

I also applied DoIt to the 11-dimensional nonlinear model
mentioned in Section 2.1 of Bornkamp’s discussion. Different
from Bornkamp’s implementation, � was estimated through
numerical differentiation and � based on crossvalidation.
I generated a 1100-run MmLHD and removed the points from

Figure 2. The DoIt approximation using a subset of design points
in the banana example. The online version of this figure is in color.

the low probability regions as done for the banana example,
which resulted in a 436-run design. Fitting DoIt on this design
took about 1 min, which is much larger than the 6 sec taken
by iterLap. On the other hand, iterLap evaluated the function
about 25,000 times, whereas DoIt used only 1100 function eval-
uations. Thus, I agree with Bornkamp’s conclusion that DoIt
will have an advantage over iterLap only when the function
evaluations are expensive.

1.3 Quasi-Monte Carlo

Professors Dasgupta and Meng raise the question: Is DoIt
just for Quasi-Monte Carlo (QMC)? I would like to clarify that
although both QMC and DoIt share the same goal of approx-
imating integrals, the two approaches are quite different. The
approach in QMC is to generate a low discrepancy sequence
in a unit hypercube, similar in spirit to a space-filling design,
and approximate the integrals by Monte Carlo (MC) average,
whereas DoIt tries to model the posterior through smooth inter-
polation and approximate the integrals analytically. Therefore,
DoIt has an advantage over QMC when the posterior densities
are smooth.

To illustrate their differences, consider the binary data ex-
ample in Section 2.2 of the article. The Laplace approximation
is given by θ |y ∼ N (2.37, 2.672). A van der Corput sequence
(see, e.g., Monahan 2011, p. 287) of length 21 is generated
and rescaled into the interval [2.37− 15, 2.37+ 15]. The QMC
estimates of the posterior mean and variance are given by

θ̂QMC = E(θ |y)QMC =
∑m

i=1 hiνi∑m
i=1 hi

and

var(θ |y)QMC =
∑m

i=1 hi(νi − θ̂QMC)2∑m
i=1 hi

.

They are plotted in Figure 3. The DoIt approximations are
also fitted using the same van der Corput sequence for m =
1, . . . , 21. The estimates of posterior mean and variance (com-
puted using the formulas given in Section 2.4 of the article) are
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Figure 3. Estimates of the posterior mean and variance in the binary data example using a van der Corput sequence. The online version of
this figure is in color.

also plotted in Figure 3. We can see that the estimates from the
DoIt converge much faster to the true values than those from the
QMC.

Another major difference of DoIt from QMC is that, QMC
relies heavily on uniform sampling in a hypercube, whereas no
such uniformity is necessary for DoIt. This is a great advantage
for DoIt, because it allows DoIt to place points strategically
in high probability regions using sequential design enabling a
better approximation of the posterior density.

1.4 GP-MCMC

Markov chain Monte Carlo (MCMC) is a well-established
methodology for Bayesian computation. So, naturally, if we en-
counter a computationally expensive posterior, we can try to
approximate it using a Gaussian process (GP) model and then
apply a suitable MCMC technique such as the one described
by Fielding et al. (2011). Professors Dasgupta and Meng inves-
tigate this approach further, describing improvements over the
Fielding et al. approach. They use the banana-shaped posterior
example for illustration and show that even a 50-run design can
approximate the posterior well using the GP-MCMC approach. I
would like to note that the excellent performance of GP-MCMC
in this example is not unexpected because the log-posterior is
a quadratic function in θ2 and a simple fourth-order polyno-
mial in θ1. The GP will do well in approximating such a simple
function!

The main difference between GP-MCMC and DoIt is that the
former approximates the logarithm of the unnormalized pos-
terior using a GP model and then computes the Bayesian in-
tegrals using MCMC, whereas the latter directly approximates
the unnormalized posterior using a GP model and obtains the
Bayesian integrals analytically. The drawback of the DoIt’s di-
rect approximation of the unnormalized posterior is the presence
of negative values, whereas the drawback of the GP-MCMC is
the additional computational effort needed for simulation. Thus,

both approaches have pros and cons. Here, I would like to high-
light one of the major advantages of DoIt’s analytical computa-
tion over a simulation-based computation. Consider a nonlinear
Bayesian optimal design problem. Let D = {x1, . . . , xn} be the
experimental design and y the data generated from a prob-
ability model p(y|x, θ ), where θ are the unknown param-
eters. An optimal design criterion based on Shannon infor-
mation gain is given by maxD E{log p(θ |D, y)}, where the
expectation is taken with respect to the joint distribution of
θ and y. Suppose we obtain N samples using an MC/MCMC
approach. Then, the problem reduces to (see, e.g., Müller
1999)

max
D

1

N

N∑
i=1

log p(θ i |D, yi). (1)

The term p(θ i |D, yi) itself is extremely complicated to calcu-
late. In turn, it needs to be evaluated N times to obtain Equation
(1). Furthermore, since Equation (1) needs to be evaluated hun-
dreds or thousands of times inside an optimization algorithm,
this becomes a very challenging problem to solve. Having an-
alytical expressions for such objective functions as offered by
DoIt can take us a long way in developing efficient algorithms
for solving such hard problems.

2. DESIGN OF EXPERIMENTS

Several issues related to the experimental design have sur-
faced in the discussions of Professor Lee, and Professor Stein-
berg and Dr. Jones. As pointed out by Lee, searching for modes
using an optimization algorithm before fitting DoIt is a good
idea. This is quite evident from the excellent performance of
Bornkamp’s iterLap algorithm. In the present implementation
of the DoIt, all the evaluations done during the optimization are
discarded, which can be quite wasteful. However, it is not clear
how to efficiently integrate the evaluation sites visited during
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the optimization with a space-filling design. This is an open
research problem.

Several suggestions for improving the design were made by
Steinberg and Jones; the most interesting among them is the use
of a subset of design points. The examples in Section 1.2 of
this rejoinder demonstrate the value of this approach. Remov-
ing points from the low-probability region helps in substantially
reducing the computations without sacrificing the quality of ap-
proximation. I found that it also helps in reducing the occurrence
of negative values in the DoIt approximation.

Steinberg and Jones point out that I did not make any con-
crete recommendation for choosing the neighborhood for the
optimization in Equation (19) of the sequential design criterion.
I was intentionally vague about this because we only need to
invoke a local optimizer instead of a global optimizer and there-
fore, the neighborhood definition becomes less important. They
also point out that if the initial space-filling design misses to
capture some high-probability regions, then the sequential de-
sign will continue to miss it. This can be true and is probably
the major weakness of the proposed sequential design criterion.
The proposed criterion is capable only to improve the accuracy
of the posterior in the region of sampling, but not so capable in
moving out to unexplored regions. Therefore, the initial space-
filling design is very crucial for the success of DoIt.

3. INTERPOLATION

Professor Lee mentions that a strict interpolation is not nec-
essary to obtain a good fit and that a shrinkage estimator can
do better. I would like to clarify that the mixture normal den-
sity shrinks the approximated posterior only at the unobserved
locations and therefore, the DoIt approximation is still an in-
terpolator. In the GP or kriging literature, shrinkage is usually
achieved by introducing a nugget term into the model. Gramacy
and Lee (2012) showed that such a nugget predictor can outper-
form the GP predictor in some cases. However, our follow-up
work on this approach (Ba and Joseph, in press) shows that the
prediction can be further improved by building an interpolator
over the nugget predictor.

Professor Steinberg and Dr Jones point out that substantial
improvements to DoIt can be made via a better choice of �. I
could not agree more on this! Their suggestion for using local
versions of � for each evaluation sites is a brilliant idea. In
fact, this is a crucial idea behind the success of Bornkamp’s
iterLap algorithm. In my initial investigations I have tried mod-
ifying DoIt using similar ideas, but left in frustration due to
its increased computational complexity especially when deal-
ing with computationally expensive posteriors. I believe that a
clever implementation of this idea can make a substantial im-
provement to the current implementation of DoIt.

4. IMPLEMENTATION

Professors Ormerod and Wand, and Dr Bornkamp have asked
for the computer implementation of DoIt. The online Supple-
mentary Materials associated with this article (posted on the
journal web site) contain R codes of the examples presented in
the article and the rejoinder. At this moment, some of the choices
such as starting point in the optimization, etc. are not automated.
There is a lot more development needed for DoIt to work suc-
cessfully in a wide variety of problems. The discussions have
rightly pointed out the strengths and weakness of the method
and have given directions for future research. I hope that this
method will evolve over the next several years and will become
a useful addition to the Bayesian computational toolbox. In any
case, the current implementation in R will at least help you to
do it!
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